Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network

计算机辅助设计 卷积神经网络 人工智能 计算机科学 计算机辅助诊断 模式识别(心理学) 接收机工作特性 乳腺摄影术 技术 数字乳腺摄影术 乳腺癌 医学 内科学 机器学习 癌症 工程制图 工程类
作者
Ming Fan,Yuanzhe Li,Shuo Zheng,Weijun Peng,Wei Tang,Lihua Li
出处
期刊:Methods [Elsevier]
卷期号:166: 103-111 被引量:38
标识
DOI:10.1016/j.ymeth.2019.02.010
摘要

Digital breast tomosynthesis (DBT) is a newly developed three-dimensional tomographic imaging modality in the field of breast cancer screening designed to alleviate the limitations of conventional digital mammography-based breast screening methods. A computer-aided detection (CAD) system was designed for masses in DBT using a faster region-based convolutional neural network (faster-RCNN). To this end, a data set was collected, including 89 patients with 105 masses. An efficient detection architecture of convolution neural network with a region proposal network (RPN) was used for each slice to generate region proposals (i.e., bounding boxes) with a mass likelihood score. In each DBT volume, a slice fusion procedure was used to merge the detection results on consecutive 2D slices into one 3D DBT volume. The performance of the CAD system was evaluated using free-response receiver operating characteristic (FROC) curves. Our RCNN-based CAD system was compared with a deep convolutional neural network (DCNN)-based CAD system. The RCNN-based CAD generated a performance with an area under the ROC (AUC) of 0.96, whereas the DCNN-based CAD achieved a performance with AUC of 0.92. For lesion-based mass detection, the sensitivity of RCNN-based CAD was 90% at 1.54 false positive (FP) per volume, whereas the sensitivity of DCNN-based CAD was 90% at 2.81 FPs/volume. For breast-based mass detection, RCNN-based CAD generated a sensitivity of 90% at 0.76 FP/breast, which is significantly increased compared with the DCNN-based CAD with a sensitivity of 90% at 2.25 FPs/breast. The results suggest that the faster R-CNN has the potential to augment the prescreening and FP reduction in the CAD system for masses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
1秒前
圆锥香蕉应助科研通管家采纳,获得20
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
曾无忧应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
敬老院N号应助科研通管家采纳,获得30
2秒前
WJH应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Lny应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
6666应助科研通管家采纳,获得10
3秒前
3秒前
juqiu发布了新的文献求助10
3秒前
强扭的瓜完成签到,获得积分10
3秒前
大梦想家完成签到,获得积分10
5秒前
orixero应助王i采纳,获得10
6秒前
wanci应助juqiu采纳,获得10
6秒前
美丽的如彤完成签到,获得积分10
7秒前
Orange应助自觉从筠采纳,获得10
7秒前
hp发布了新的文献求助10
8秒前
CodeCraft应助大胆的初瑶采纳,获得10
9秒前
义气的巨人完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
小青椒应助nihao采纳,获得30
11秒前
xingyi完成签到,获得积分10
12秒前
活力的念蕾完成签到,获得积分10
12秒前
yygz0703完成签到 ,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867