Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network

计算机辅助设计 卷积神经网络 人工智能 计算机科学 计算机辅助诊断 模式识别(心理学) 接收机工作特性 乳腺摄影术 技术 数字乳腺摄影术 乳腺癌 医学 内科学 机器学习 癌症 工程制图 工程类
作者
Ming Fan,Yuanzhe Li,Shuo Zheng,Weijun Peng,Wei Tang,Lihua Li
出处
期刊:Methods [Elsevier BV]
卷期号:166: 103-111 被引量:38
标识
DOI:10.1016/j.ymeth.2019.02.010
摘要

Digital breast tomosynthesis (DBT) is a newly developed three-dimensional tomographic imaging modality in the field of breast cancer screening designed to alleviate the limitations of conventional digital mammography-based breast screening methods. A computer-aided detection (CAD) system was designed for masses in DBT using a faster region-based convolutional neural network (faster-RCNN). To this end, a data set was collected, including 89 patients with 105 masses. An efficient detection architecture of convolution neural network with a region proposal network (RPN) was used for each slice to generate region proposals (i.e., bounding boxes) with a mass likelihood score. In each DBT volume, a slice fusion procedure was used to merge the detection results on consecutive 2D slices into one 3D DBT volume. The performance of the CAD system was evaluated using free-response receiver operating characteristic (FROC) curves. Our RCNN-based CAD system was compared with a deep convolutional neural network (DCNN)-based CAD system. The RCNN-based CAD generated a performance with an area under the ROC (AUC) of 0.96, whereas the DCNN-based CAD achieved a performance with AUC of 0.92. For lesion-based mass detection, the sensitivity of RCNN-based CAD was 90% at 1.54 false positive (FP) per volume, whereas the sensitivity of DCNN-based CAD was 90% at 2.81 FPs/volume. For breast-based mass detection, RCNN-based CAD generated a sensitivity of 90% at 0.76 FP/breast, which is significantly increased compared with the DCNN-based CAD with a sensitivity of 90% at 2.25 FPs/breast. The results suggest that the faster R-CNN has the potential to augment the prescreening and FP reduction in the CAD system for masses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾文慧完成签到,获得积分10
刚刚
3秒前
yuexu应助touka666采纳,获得10
3秒前
苹果发布了新的文献求助10
4秒前
4秒前
oldjeff完成签到,获得积分10
4秒前
小白发布了新的文献求助10
4秒前
ran发布了新的文献求助10
4秒前
6秒前
科研通AI5应助1wEi采纳,获得30
6秒前
6秒前
6秒前
旭_完成签到,获得积分10
6秒前
f_crazy发布了新的文献求助10
7秒前
朱奕韬发布了新的文献求助10
8秒前
唐瑾瑜发布了新的文献求助10
9秒前
小马甲应助backerry采纳,获得10
10秒前
温婉的从凝完成签到,获得积分10
10秒前
11秒前
element完成签到,获得积分10
11秒前
大鹅完成签到 ,获得积分10
13秒前
科研通AI5应助LiY采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
谭宝完成签到,获得积分10
14秒前
15秒前
孤独秋双完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
16秒前
17秒前
似鱼完成签到,获得积分10
17秒前
18秒前
LLHH发布了新的文献求助10
18秒前
huangt完成签到,获得积分10
19秒前
19秒前
20秒前
哔哩哔哩哔哔哔完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942890
求助须知:如何正确求助?哪些是违规求助? 4208298
关于积分的说明 13081999
捐赠科研通 3987523
什么是DOI,文献DOI怎么找? 2183163
邀请新用户注册赠送积分活动 1198757
关于科研通互助平台的介绍 1111169