Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network

计算机辅助设计 卷积神经网络 人工智能 计算机科学 计算机辅助诊断 模式识别(心理学) 接收机工作特性 乳腺摄影术 技术 数字乳腺摄影术 乳腺癌 医学 内科学 机器学习 癌症 工程制图 工程类
作者
Ming Fan,Yuanzhe Li,Shuo Zheng,Weijun Peng,Wei Tang,Lihua Li
出处
期刊:Methods [Elsevier]
卷期号:166: 103-111 被引量:38
标识
DOI:10.1016/j.ymeth.2019.02.010
摘要

Digital breast tomosynthesis (DBT) is a newly developed three-dimensional tomographic imaging modality in the field of breast cancer screening designed to alleviate the limitations of conventional digital mammography-based breast screening methods. A computer-aided detection (CAD) system was designed for masses in DBT using a faster region-based convolutional neural network (faster-RCNN). To this end, a data set was collected, including 89 patients with 105 masses. An efficient detection architecture of convolution neural network with a region proposal network (RPN) was used for each slice to generate region proposals (i.e., bounding boxes) with a mass likelihood score. In each DBT volume, a slice fusion procedure was used to merge the detection results on consecutive 2D slices into one 3D DBT volume. The performance of the CAD system was evaluated using free-response receiver operating characteristic (FROC) curves. Our RCNN-based CAD system was compared with a deep convolutional neural network (DCNN)-based CAD system. The RCNN-based CAD generated a performance with an area under the ROC (AUC) of 0.96, whereas the DCNN-based CAD achieved a performance with AUC of 0.92. For lesion-based mass detection, the sensitivity of RCNN-based CAD was 90% at 1.54 false positive (FP) per volume, whereas the sensitivity of DCNN-based CAD was 90% at 2.81 FPs/volume. For breast-based mass detection, RCNN-based CAD generated a sensitivity of 90% at 0.76 FP/breast, which is significantly increased compared with the DCNN-based CAD with a sensitivity of 90% at 2.25 FPs/breast. The results suggest that the faster R-CNN has the potential to augment the prescreening and FP reduction in the CAD system for masses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘敏123456完成签到,获得积分20
刚刚
刚刚
等待若魔完成签到,获得积分10
1秒前
Peyton Why发布了新的文献求助10
1秒前
秀儿发布了新的文献求助10
2秒前
上官若男应助清爽安青采纳,获得10
4秒前
4秒前
浮游应助juanlajiao采纳,获得10
4秒前
刘敏123456发布了新的文献求助10
4秒前
4秒前
洁净灭男完成签到,获得积分10
5秒前
所所应助太叔夜南采纳,获得10
6秒前
6秒前
Peyton Why完成签到,获得积分10
7秒前
ajhs完成签到,获得积分20
8秒前
8秒前
尽快毕业发布了新的文献求助10
8秒前
桐桐应助swed采纳,获得10
8秒前
9秒前
貔貅发布了新的文献求助10
9秒前
9秒前
ajhs发布了新的文献求助30
11秒前
11秒前
12秒前
wjy321发布了新的文献求助10
13秒前
14秒前
酷炫小熊猫完成签到,获得积分20
14秒前
悟123完成签到 ,获得积分10
15秒前
坦率灵槐发布了新的文献求助10
15秒前
Destiny完成签到,获得积分10
16秒前
17秒前
太叔夜南发布了新的文献求助10
19秒前
19秒前
HSA完成签到,获得积分10
19秒前
沐熙完成签到 ,获得积分10
19秒前
十里关注了科研通微信公众号
20秒前
研友_LaNOdn发布了新的文献求助10
21秒前
double完成签到 ,获得积分10
21秒前
飞快的孱完成签到,获得积分10
22秒前
是我不得开心妍完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937