Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network

计算机辅助设计 卷积神经网络 人工智能 计算机科学 计算机辅助诊断 模式识别(心理学) 接收机工作特性 乳腺摄影术 技术 数字乳腺摄影术 乳腺癌 医学 内科学 机器学习 癌症 工程类 工程制图
作者
Ming Fan,Yuanzhe Li,Shuo Zheng,Weijun Peng,Wei Tang,Lihua Li
出处
期刊:Methods [Elsevier BV]
卷期号:166: 103-111 被引量:38
标识
DOI:10.1016/j.ymeth.2019.02.010
摘要

Digital breast tomosynthesis (DBT) is a newly developed three-dimensional tomographic imaging modality in the field of breast cancer screening designed to alleviate the limitations of conventional digital mammography-based breast screening methods. A computer-aided detection (CAD) system was designed for masses in DBT using a faster region-based convolutional neural network (faster-RCNN). To this end, a data set was collected, including 89 patients with 105 masses. An efficient detection architecture of convolution neural network with a region proposal network (RPN) was used for each slice to generate region proposals (i.e., bounding boxes) with a mass likelihood score. In each DBT volume, a slice fusion procedure was used to merge the detection results on consecutive 2D slices into one 3D DBT volume. The performance of the CAD system was evaluated using free-response receiver operating characteristic (FROC) curves. Our RCNN-based CAD system was compared with a deep convolutional neural network (DCNN)-based CAD system. The RCNN-based CAD generated a performance with an area under the ROC (AUC) of 0.96, whereas the DCNN-based CAD achieved a performance with AUC of 0.92. For lesion-based mass detection, the sensitivity of RCNN-based CAD was 90% at 1.54 false positive (FP) per volume, whereas the sensitivity of DCNN-based CAD was 90% at 2.81 FPs/volume. For breast-based mass detection, RCNN-based CAD generated a sensitivity of 90% at 0.76 FP/breast, which is significantly increased compared with the DCNN-based CAD with a sensitivity of 90% at 2.25 FPs/breast. The results suggest that the faster R-CNN has the potential to augment the prescreening and FP reduction in the CAD system for masses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
在水一方应助whisper采纳,获得10
1秒前
情怀应助陈嗲嗲采纳,获得10
5秒前
熠熠完成签到,获得积分10
5秒前
6秒前
6秒前
Huasen Lu完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
daxueshen完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
无情干饭崽完成签到,获得积分10
12秒前
12秒前
华仔应助七月流火采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
陈小白完成签到,获得积分10
13秒前
13秒前
现实的行云完成签到,获得积分20
13秒前
拼搏的孤容完成签到 ,获得积分10
14秒前
歇菜发布了新的文献求助10
14秒前
15秒前
深情安青应助乌波菲采纳,获得10
16秒前
新司机发布了新的文献求助10
16秒前
17秒前
Jasper应助陈小白采纳,获得10
17秒前
17秒前
FashionBoy应助Cat采纳,获得10
17秒前
明理雨筠发布了新的文献求助10
17秒前
木木发布了新的文献求助10
17秒前
17秒前
tidongzhiwu发布了新的文献求助10
17秒前
qq发布了新的文献求助10
18秒前
辰昜完成签到,获得积分10
18秒前
Arthur完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451