Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network

计算机辅助设计 卷积神经网络 人工智能 计算机科学 计算机辅助诊断 模式识别(心理学) 接收机工作特性 乳腺摄影术 技术 数字乳腺摄影术 乳腺癌 医学 内科学 机器学习 癌症 工程类 工程制图
作者
Ming Fan,Yuanzhe Li,Shuo Zheng,Weijun Peng,Wei Tang,Lihua Li
出处
期刊:Methods [Elsevier]
卷期号:166: 103-111 被引量:38
标识
DOI:10.1016/j.ymeth.2019.02.010
摘要

Digital breast tomosynthesis (DBT) is a newly developed three-dimensional tomographic imaging modality in the field of breast cancer screening designed to alleviate the limitations of conventional digital mammography-based breast screening methods. A computer-aided detection (CAD) system was designed for masses in DBT using a faster region-based convolutional neural network (faster-RCNN). To this end, a data set was collected, including 89 patients with 105 masses. An efficient detection architecture of convolution neural network with a region proposal network (RPN) was used for each slice to generate region proposals (i.e., bounding boxes) with a mass likelihood score. In each DBT volume, a slice fusion procedure was used to merge the detection results on consecutive 2D slices into one 3D DBT volume. The performance of the CAD system was evaluated using free-response receiver operating characteristic (FROC) curves. Our RCNN-based CAD system was compared with a deep convolutional neural network (DCNN)-based CAD system. The RCNN-based CAD generated a performance with an area under the ROC (AUC) of 0.96, whereas the DCNN-based CAD achieved a performance with AUC of 0.92. For lesion-based mass detection, the sensitivity of RCNN-based CAD was 90% at 1.54 false positive (FP) per volume, whereas the sensitivity of DCNN-based CAD was 90% at 2.81 FPs/volume. For breast-based mass detection, RCNN-based CAD generated a sensitivity of 90% at 0.76 FP/breast, which is significantly increased compared with the DCNN-based CAD with a sensitivity of 90% at 2.25 FPs/breast. The results suggest that the faster R-CNN has the potential to augment the prescreening and FP reduction in the CAD system for masses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
YongGanNN完成签到,获得积分10
2秒前
纯真的梦竹应助思睿拜采纳,获得10
3秒前
4秒前
忆安发布了新的文献求助10
6秒前
JJJ完成签到,获得积分20
8秒前
橙Chengcen完成签到 ,获得积分10
8秒前
8秒前
8秒前
顾矜应助l z y采纳,获得10
8秒前
立青完成签到,获得积分20
9秒前
魁拔蛮吉完成签到 ,获得积分10
10秒前
10秒前
顺利的冰旋完成签到 ,获得积分10
12秒前
美丽旭尧完成签到,获得积分10
14秒前
擦书驳回了华仔应助
17秒前
17秒前
852应助忆安采纳,获得10
17秒前
18秒前
大力发布了新的文献求助30
19秒前
传奇3应助我不是超人采纳,获得10
21秒前
刘金泽完成签到,获得积分10
24秒前
25秒前
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
老阶梯应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得30
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
26秒前
zh完成签到 ,获得积分10
27秒前
vane发布了新的文献求助10
28秒前
28秒前
Orange应助wujiao采纳,获得10
28秒前
Jiang完成签到,获得积分10
29秒前
32秒前
深情代玉完成签到,获得积分10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243808
求助须知:如何正确求助?哪些是违规求助? 2887618
关于积分的说明 8249384
捐赠科研通 2556359
什么是DOI,文献DOI怎么找? 1384427
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625794