Diagnosis of Sucker Rod Pump based on generating dynamometer cards

抽油杆 测功机 断层(地质) 机制(生物学) 工程类 控制工程 计算机辅助 财产(哲学) 计算机科学 可靠性工程 数据挖掘 机械工程 认识论 地质学 哲学 地震学
作者
Boyuan Zheng,Xianwen Gao,Xiangyu Li
出处
期刊:Journal of Process Control [Elsevier BV]
卷期号:77: 76-88 被引量:43
标识
DOI:10.1016/j.jprocont.2019.02.008
摘要

The dynamometer cards (DC) are the data shown as closed curves collected from Sucker Rod Pumps, which are essential evidence to monitor the working states in modern oil are engineering. To meet the actual needs of oil fields, recently, the computer-aided diagnosis techniques are becoming useful measurements to help engineers monitoring the wells. Nevertheless, how to collect the various kinds of fault data from a well is always a puzzle for the application of the computer-aided methods, because of a well hardly experiences many types of faulty working states. The typical solution for this problem is building an album containing DCs collected from different wells, but this approach neglects the property differences between wells, which may influence the diagnosis accuracy. In order to address this tough issue, in this paper, a novel approach regarding generating DCs is proposed based on the analysis of the mechanism of a sucker rod pump (SRP) at normal and several faulty scenarios. This method could use the productive parameters and operation rules of a well to calculate the DCs at different working states based on dynamic mechanism analysis. Subsequently, according to the data support of generating DCs, the Hidden Markov Models under a specifically designed framework is used to build the relationships between DCs and working states. At last, the proposed method is verified experimentally through the productive parameters of many wells collected from an oilfield, and then some conventional techniques are employed in the comparison studies. The obtained results demonstrate the effectiveness of the proposed method for diagnosing the working states of Sucker Rod Pumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔以冬完成签到,获得积分10
刚刚
开心果大王发布了新的文献求助500
刚刚
1秒前
cpli发布了新的文献求助30
1秒前
1秒前
chang完成签到,获得积分20
1秒前
EthanChan完成签到,获得积分10
1秒前
窦慕卉完成签到,获得积分10
2秒前
2秒前
善学以致用应助段一帆采纳,获得10
3秒前
3秒前
白白的珠珠完成签到,获得积分10
3秒前
愉快幻悲完成签到,获得积分10
3秒前
虚幻人完成签到,获得积分10
3秒前
哦豁完成签到,获得积分10
3秒前
有魅力的从凝完成签到,获得积分10
3秒前
乐此不疲发布了新的文献求助10
4秒前
自觉石头完成签到 ,获得积分10
4秒前
伯赏松思完成签到,获得积分10
4秒前
dzjin完成签到,获得积分10
4秒前
明亮大叔发布了新的文献求助10
5秒前
CART汪发布了新的文献求助10
5秒前
勤劳的老九应助12334采纳,获得10
5秒前
一颗橙子完成签到,获得积分10
5秒前
5秒前
ajun完成签到,获得积分10
6秒前
柴子完成签到,获得积分10
6秒前
爱听歌的飞双完成签到,获得积分10
7秒前
wenbo发布了新的文献求助20
7秒前
某只橘猫君完成签到,获得积分10
8秒前
无限的续发布了新的文献求助10
8秒前
徐木木完成签到,获得积分10
9秒前
zxx发布了新的文献求助10
10秒前
11秒前
yunii完成签到,获得积分10
12秒前
12秒前
ff完成签到,获得积分10
12秒前
13秒前
13秒前
无聊的以南完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968844
求助须知:如何正确求助?哪些是违规求助? 3513769
关于积分的说明 11169920
捐赠科研通 3249095
什么是DOI,文献DOI怎么找? 1794630
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755