Factor modeling for high-dimensional time series: Inference for the number of factors

数学 估计员 系列(地层学) 维数之咒 维数(图论) 应用数学 特征向量 样本量测定 因子分析 分歧(语言学) 降维 统计 组合数学 计算机科学 量子力学 生物 语言学 物理 哲学 古生物学 人工智能
作者
Clifford Lam,Qiwei Yao
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:40 (2) 被引量:243
标识
DOI:10.1214/12-aos970
摘要

This paper deals with the factor modeling for high-dimensional time series based on a dimension-reduction viewpoint. Under stationary settings, the inference is simple in the sense that both the number of factors and the factor loadings are estimated in terms of an eigenanalysis for a nonnegative definite matrix, and is therefore applicable when the dimension of time series is on the order of a few thousands. Asymptotic properties of the proposed method are investigated under two settings: (i) the sample size goes to infinity while the dimension of time series is fixed; and (ii) both the sample size and the dimension of time series go to infinity together. In particular, our estimators for zero-eigenvalues enjoy faster convergence (or slower divergence) rates, hence making the estimation for the number of factors easier. In particular, when the sample size and the dimension of time series go to infinity together, the estimators for the eigenvalues are no longer consistent. However, our estimator for the number of the factors, which is based on the ratios of the estimated eigenvalues, still works fine. Furthermore, this estimation shows the so-called “blessing of dimensionality” property in the sense that the performance of the estimation may improve when the dimension of time series increases. A two-step procedure is investigated when the factors are of different degrees of strength. Numerical illustration with both simulated and real data is also reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵鞋垫完成签到,获得积分10
刚刚
丘比特应助沧笙踏歌采纳,获得30
刚刚
传奇3应助十一玮采纳,获得10
刚刚
1秒前
丁丽发布了新的文献求助10
1秒前
2秒前
zx关闭了zx文献求助
2秒前
Ava应助谭玲慧采纳,获得10
3秒前
Jack完成签到,获得积分10
4秒前
神羊完成签到,获得积分10
5秒前
LEMONS应助KYRIELIU采纳,获得10
6秒前
gyj1发布了新的文献求助10
6秒前
彩色傲柏完成签到,获得积分10
7秒前
stel7发布了新的文献求助30
7秒前
7秒前
9秒前
Lucas应助沧笙踏歌采纳,获得10
11秒前
龙韵完成签到,获得积分10
11秒前
烟花应助彩色傲柏采纳,获得10
11秒前
12秒前
这个大头张呀完成签到,获得积分10
14秒前
小二郎应助kyle采纳,获得10
15秒前
GERRARD完成签到,获得积分10
15秒前
16秒前
17秒前
海清完成签到,获得积分10
17秒前
Roy发布了新的文献求助10
18秒前
stel7完成签到,获得积分10
18秒前
彭于晏应助蜡笔采纳,获得10
21秒前
自然1111发布了新的文献求助30
21秒前
23秒前
量子星尘发布了新的文献求助30
23秒前
哈哈哈666发布了新的文献求助10
24秒前
卓Celina完成签到,获得积分10
25秒前
bkagyin应助KYRIELIU采纳,获得10
26秒前
26秒前
FanFan应助沧笙踏歌采纳,获得30
27秒前
皮皮凯完成签到,获得积分10
27秒前
ybb完成签到,获得积分10
28秒前
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186