Using HLM to investigate the relationship between traffic accident risk of private vehicles and public transportation

大都市区 运输工程 撞车 公共交通 业务 政府(语言学) 多级模型 事故(哲学) 工程类 地理 计算机科学 统计 数学 哲学 认识论 考古 程序设计语言 语言学
作者
Tzu-Ying Chen,Rong-Chang Jou
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier]
卷期号:119: 148-161 被引量:18
标识
DOI:10.1016/j.tra.2018.11.005
摘要

Public transportation is relatively safe and secure, although less convenient than private modes of transport. However, current trends indicate that, by 2030, road traffic injuries will be the fifth leading cause of death globally. This study proposes an approach for identifying hidden contributors to traffic risk in the major metropolitan cities of Taiwan. Our purpose is to offer a comprehensive econometrical framework, using Hierarchical Linear Modelling (HLM), which highlights important contributors to traffic accident risk at different levels of injuries for public transportation. Four models underlying HLM are used to characterize the traffic accident risk. Our empirical results indicate that random intercept and random slope with interaction of HLM (model 4) is the best model. In addition, there are significant regional differences in traffic accident risk depending on the use of public and private transportation, the length of bus routes, daily average number of bus frequency per route, gender, driving habits, and behaviour. Results show that, when the length of bus routes increases by 50% in a city with well-developed infrastructure, such as Taipei, the accident risk would reduce the crash risk from 1.66 to 1.43 (decreases by 0.23), corresponding to 3450 casualties, and the total accident expense can be reduced by NT$13 billion. If daily average number of bus frequency per route in Taichung increases by 50%, there are almost 3000 fewer casualties, and the accident expense decreases by NT$9.6 billion. The results of this study provide suggestions to the government that developing public transportation can effectively decrease road traffic accident risk and accident expense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
文艺的筮完成签到 ,获得积分10
3秒前
chenchenchen发布了新的文献求助10
4秒前
CipherSage应助Zoeyz采纳,获得10
4秒前
奔奔发布了新的文献求助10
4秒前
cocolu应助传统的鹏涛采纳,获得10
6秒前
9秒前
小葵发布了新的文献求助10
9秒前
11秒前
上官若男应助Li采纳,获得10
13秒前
chenchenchen发布了新的文献求助10
13秒前
在水一方应助Soso采纳,获得10
13秒前
科目三应助liuyan采纳,获得10
15秒前
16秒前
李健应助乐观的中心采纳,获得10
16秒前
sakana完成签到,获得积分20
16秒前
shinnosuke完成签到,获得积分10
17秒前
17秒前
慕青应助Voloid采纳,获得10
19秒前
wade2016发布了新的文献求助10
21秒前
wanci应助大脑洞少年采纳,获得10
22秒前
jiaoshaa完成签到,获得积分10
24秒前
25秒前
CXS完成签到,获得积分10
26秒前
榕树下完成签到,获得积分10
27秒前
桃大屁发布了新的文献求助10
27秒前
珈小羽完成签到,获得积分10
30秒前
30秒前
30秒前
jiaoshaa发布了新的文献求助10
32秒前
32秒前
33秒前
小葵完成签到,获得积分10
33秒前
科研通AI2S应助小倩倩加油采纳,获得10
34秒前
Leif应助兔兔sci采纳,获得10
35秒前
Voloid发布了新的文献求助10
35秒前
liuyan发布了新的文献求助10
35秒前
东东发布了新的文献求助10
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613