First-principles study on the grain boundary embrittlement of bcc-Fe by Mn segregation

材料科学 脆化 劈理(地质) 晶界 延展性(地球科学) 断裂韧性 极限抗拉强度 密度泛函理论 冶金 结晶学 断裂(地质) 复合材料 微观结构 计算化学 蠕动 化学
作者
Kazuma Ito,Hideaki Sawada,Shigenobu Ogata
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:3 (1) 被引量:36
标识
DOI:10.1103/physrevmaterials.3.013609
摘要

Developing steels with high strength and ductility is needed in order to improve the mechanical reliability and environmental performance of engineering products. The addition of Mn is a key technology for developing next-generation high-strength steels. However, the addition of Mn leads to a serious side effect, grain boundary (GB) embrittlement, which decreases the mechanical toughness of steels. Understanding the mechanism of GB embrittlement due to Mn is an essential process for improving the toughness of steels containing Mn. In this work, in order to reveal the fundamental mechanism of GB embrittlement by Mn, the effect of Mn on the cleavage fracture of bcc-Fe GBs, especially the influence of the difference in the magnetic coupling state between Mn and Fe, is investigated using uniaxial tensile simulations of the bcc-Fe $\mathrm{\ensuremath{\Sigma}}3(111)$ GB with and without Mn segregation using the first-principles density functional theory (DFT). The uniaxial tensile simulations demonstrate that Mn decreases the cleavage-fracture energy of the GB. In particular, the ferromagnetically coupled Mn substantially decreases the cleavage-fracture energy of the GB, promoting cleavage fracture. When ferromagnetically coupled Mn is present in the bcc-Fe GBs, the electrons contributing to the bonds between Mn and the surrounding Fe atoms easily localize to the Mn atom with increasing stress, and the bonding between Mn and the surrounding Fe atoms rapidly weakens, leading to a cleavage fracture of the GBs at a lower stress and strain. This unusual behavior is derived from the stability of the nonbonding Mn as a result of its half-filled d shell. These results show that the local magnetic state in GBs is one of the factors determining the macroscopic mechanical properties of steels containing Mn.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡芙完成签到,获得积分10
刚刚
刚刚
Aprilapple完成签到,获得积分10
1秒前
1秒前
体贴怜翠完成签到,获得积分10
2秒前
完美世界应助苻谷丝采纳,获得10
2秒前
乔哥儿完成签到,获得积分10
2秒前
共享精神应助phil采纳,获得10
3秒前
小徐801完成签到,获得积分10
4秒前
YZMVP发布了新的文献求助10
4秒前
4秒前
yiren完成签到,获得积分10
5秒前
6秒前
三水完成签到,获得积分10
6秒前
nora发布了新的文献求助10
6秒前
8秒前
xiadu发布了新的文献求助10
9秒前
Lsy完成签到,获得积分10
9秒前
9秒前
9秒前
12秒前
马子妍发布了新的文献求助10
12秒前
隐形曼青应助粥mi采纳,获得10
13秒前
天天完成签到 ,获得积分10
14秒前
XIEQ完成签到,获得积分10
15秒前
酷波er应助Yuchaoo采纳,获得10
15秒前
微微发布了新的文献求助20
15秒前
老衲发布了新的文献求助10
15秒前
phil发布了新的文献求助10
15秒前
七七完成签到,获得积分10
16秒前
体贴怜翠发布了新的文献求助10
16秒前
小白应助XIEQ采纳,获得10
18秒前
19秒前
22秒前
woobinhua完成签到,获得积分10
22秒前
今后应助brianzk1989采纳,获得10
22秒前
vv发布了新的文献求助10
23秒前
24秒前
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132