First-principles study on the grain boundary embrittlement of bcc-Fe by Mn segregation

材料科学 脆化 劈理(地质) 晶界 延展性(地球科学) 断裂韧性 极限抗拉强度 密度泛函理论 冶金 结晶学 断裂(地质) 复合材料 微观结构 计算化学 蠕动 化学
作者
Kazuma Ito,Hideaki Sawada,Shigenobu Ogata
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:3 (1) 被引量:36
标识
DOI:10.1103/physrevmaterials.3.013609
摘要

Developing steels with high strength and ductility is needed in order to improve the mechanical reliability and environmental performance of engineering products. The addition of Mn is a key technology for developing next-generation high-strength steels. However, the addition of Mn leads to a serious side effect, grain boundary (GB) embrittlement, which decreases the mechanical toughness of steels. Understanding the mechanism of GB embrittlement due to Mn is an essential process for improving the toughness of steels containing Mn. In this work, in order to reveal the fundamental mechanism of GB embrittlement by Mn, the effect of Mn on the cleavage fracture of bcc-Fe GBs, especially the influence of the difference in the magnetic coupling state between Mn and Fe, is investigated using uniaxial tensile simulations of the bcc-Fe $\mathrm{\ensuremath{\Sigma}}3(111)$ GB with and without Mn segregation using the first-principles density functional theory (DFT). The uniaxial tensile simulations demonstrate that Mn decreases the cleavage-fracture energy of the GB. In particular, the ferromagnetically coupled Mn substantially decreases the cleavage-fracture energy of the GB, promoting cleavage fracture. When ferromagnetically coupled Mn is present in the bcc-Fe GBs, the electrons contributing to the bonds between Mn and the surrounding Fe atoms easily localize to the Mn atom with increasing stress, and the bonding between Mn and the surrounding Fe atoms rapidly weakens, leading to a cleavage fracture of the GBs at a lower stress and strain. This unusual behavior is derived from the stability of the nonbonding Mn as a result of its half-filled d shell. These results show that the local magnetic state in GBs is one of the factors determining the macroscopic mechanical properties of steels containing Mn.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Tsin778采纳,获得10
刚刚
科研通AI2S应助曹志伟采纳,获得10
刚刚
刚刚
赘婿应助Thinkol采纳,获得10
刚刚
1秒前
YuexYue完成签到,获得积分10
2秒前
英姑应助cckk采纳,获得10
2秒前
hkh发布了新的文献求助10
2秒前
2秒前
2秒前
VISIN发布了新的文献求助10
2秒前
doudou发布了新的文献求助10
2秒前
喜羊羊发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
LLL完成签到,获得积分10
4秒前
chr完成签到,获得积分10
4秒前
斯文败类应助sadd采纳,获得10
4秒前
赵慧完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
nico发布了新的文献求助10
4秒前
懒羊羊关注了科研通微信公众号
5秒前
牛马人发布了新的文献求助10
6秒前
6秒前
Sherlock完成签到,获得积分10
6秒前
酷波er应助徐爱琳采纳,获得10
6秒前
6秒前
小北发布了新的文献求助10
7秒前
嘉嘉完成签到,获得积分10
7秒前
PANXX完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
羊羊发布了新的文献求助10
7秒前
大气月饼发布了新的文献求助10
8秒前
流星砸地鼠完成签到 ,获得积分10
9秒前
9秒前
茹茹发布了新的文献求助10
9秒前
Bear发布了新的文献求助10
10秒前
赵慧发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210