基准标记
影像引导放射治疗
医学
放射治疗计划
图像配准
轮廓
核医学
前列腺癌
放射治疗
放射科
锥束ct
前列腺
断层摄影术
锥束ct
计算机断层摄影术
癌症
计算机科学
人工智能
图像(数学)
内科学
计算机图形学(图像)
作者
Hirohito Kan,Yuta Eguchi,Takahiro Tsuchiya,Takuto Kondo,Yuto Kitagawa,Yuji Mekata,Hiroshi Fukuma,Ryoya Yoshida,Harumasa Kasai,Hiroshi Kunitomo,Yasujiro Hirose,Yuta Shibamoto
标识
DOI:10.1088/1361-6560/ab02cc
摘要
MR-only simulations provide pseudo-CT images which are segmented into 5 kinds of tissues from DIXON-based images. However, it is difficult to register pseudo-CT images to cone-beam CT (CBCT) images collected for image-guided radiation therapy (IGRT), because of the lack of contrasts among tissues. We validated gaps of IGRT between pseudo-CT or planning CT and CBCT for patients without implanted markers. We also propose calcification-assisted registration for MR-only simulation. We conducted retrospective analyses to verify the registration accuracy in 15 patients who underwent volumetric modulated arc therapy (VMAT) for prostate cancer. They underwent planning CT and pseudo-CT. Pseudo-CT images after deformable image registration (DIR) to planning CT images were rendered automatic pelvic bone matching to CBCT images. Patient positions on the pseudo-CT images after DIR were shifted on the basis of tissues around the prostate. We compared registration gaps between the images of planning CT and pseudo-CT with DIR, assuming that the tissue-based matching between the planning CT and CBCT was the gold standard. To the pseudo-CT images with DIR, calcifications detected on planning CT were added. We validated IGRT accuracy for a calcification-assisted registration. The absolute registration errors of the pseudo-CT, in comparison with the planning CT, were 0.34 ± 0.50 (lateral), 1.3 ± 1.3 (longitudinal), and 1.1 ± 1.0 mm (vertical). The absolute registration errors of the pseudo-CT with calcification contouring, in comparison with the planning CT, were 0.41 ± 1.0 (lateral), 0.87 ± 0.92 (longitudinal), and 0.74 ± 0.64 mm (vertical). Reduced absolute registration errors were observed in the proposed approach in the longitudinal (P < 0.01) and vertical (P < 0.01) dimensions when using calcification-assisted registration. The tissue-based registration using the MR-only simulation was not sufficient for use in patients with prostate cancer without implanted markers. The calcification-assisted registration might help to improve IGRT accuracy using MRI alone.
科研通智能强力驱动
Strongly Powered by AbleSci AI