Unsupervised fabric defect detection based on a deep convolutional generative adversarial network

人工智能 鉴别器 计算机科学 分割 残余物 模式识别(心理学) 编码器 像素 卷积神经网络 图像(数学) 计算机视觉 算法 电信 探测器 操作系统
作者
Guanghua Hu,Junfeng Huang,Qinghui Wang,Jingrong Li,Zhijia Xu,Xingbiao Huang
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:90 (3-4): 247-270 被引量:97
标识
DOI:10.1177/0040517519862880
摘要

Detecting and locating surface defects in textured materials is a crucial but challenging problem due to factors such as texture variations and lack of adequate defective samples prior to testing. In this paper we present a novel unsupervised method for automatically detecting defects in fabrics based on a deep convolutional generative adversarial network (DCGAN). The proposed method extends the standard DCGAN, which consists of a discriminator and a generator, by introducing a new encoder component. With the assistance of this encoder, our model can reconstruct a given query image such that no defects but only normal textures will be preserved in the reconstruction. Therefore, when subtracting the reconstruction from the original image, a residual map can be created to highlight potential defective regions. Besides, our model generates a likelihood map for the image under inspection where each pixel value indicates the probability of occurrence of defects at that location. The residual map and the likelihood map are then synthesized together to form an enhanced fusion map. Typically, the fusion map exhibits uniform gray levels over defect-free regions but distinct deviations over defective areas, which can be further thresholded to produce a binarized segmentation result. Our model can be unsupervisedly trained by feeding with a set of small-sized image patches picked from a few defect-free examples. The training is divided into several successively performed stages, each under an individual training strategy. The performance of the proposed method has been extensively evaluated by a variety of real fabric samples. The experimental results in comparison with other methods demonstrate its effectiveness in fabric defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕夕口口发布了新的文献求助10
刚刚
1秒前
薛定鹅的狐狸完成签到,获得积分20
1秒前
在水一方应助浅渊采纳,获得10
1秒前
2秒前
2秒前
竹萱发布了新的文献求助10
2秒前
4秒前
lijiaxin应助JINJX采纳,获得10
4秒前
马儿扎哈发布了新的文献求助10
4秒前
7秒前
咻咻发布了新的文献求助10
7秒前
eva发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助mss12138采纳,获得50
9秒前
lhy12345完成签到,获得积分10
9秒前
西西发布了新的文献求助10
10秒前
12秒前
xiaopihaier完成签到,获得积分10
12秒前
十年123发布了新的文献求助10
13秒前
SciGPT应助马儿扎哈采纳,获得10
13秒前
13秒前
科研通AI2S应助夕夕口口采纳,获得10
14秒前
14秒前
天天快乐应助yangsouth采纳,获得10
15秒前
15秒前
allrubbish发布了新的文献求助10
17秒前
SYLH应助勤劳的洋葱采纳,获得20
19秒前
高兴的小完成签到,获得积分10
19秒前
鲁楠发布了新的文献求助10
19秒前
浅渊发布了新的文献求助10
20秒前
20秒前
抛物线发布了新的文献求助30
21秒前
慕青应助Steven采纳,获得10
22秒前
RON发布了新的文献求助10
22秒前
NMR发布了新的文献求助10
23秒前
霸气魔镜发布了新的文献求助10
23秒前
eva完成签到,获得积分20
23秒前
23秒前
思源应助无名采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975953
求助须知:如何正确求助?哪些是违规求助? 3520269
关于积分的说明 11201866
捐赠科研通 3256738
什么是DOI,文献DOI怎么找? 1798436
邀请新用户注册赠送积分活动 877578
科研通“疑难数据库(出版商)”最低求助积分说明 806464