Unsupervised fabric defect detection based on a deep convolutional generative adversarial network

人工智能 鉴别器 计算机科学 分割 残余物 模式识别(心理学) 编码器 像素 卷积神经网络 图像(数学) 计算机视觉 算法 电信 探测器 操作系统
作者
Guanghua Hu,Junfeng Huang,Qinghui Wang,Jingrong Li,Zhijia Xu,Xingbiao Huang
出处
期刊:Textile Research Journal [SAGE]
卷期号:90 (3-4): 247-270 被引量:97
标识
DOI:10.1177/0040517519862880
摘要

Detecting and locating surface defects in textured materials is a crucial but challenging problem due to factors such as texture variations and lack of adequate defective samples prior to testing. In this paper we present a novel unsupervised method for automatically detecting defects in fabrics based on a deep convolutional generative adversarial network (DCGAN). The proposed method extends the standard DCGAN, which consists of a discriminator and a generator, by introducing a new encoder component. With the assistance of this encoder, our model can reconstruct a given query image such that no defects but only normal textures will be preserved in the reconstruction. Therefore, when subtracting the reconstruction from the original image, a residual map can be created to highlight potential defective regions. Besides, our model generates a likelihood map for the image under inspection where each pixel value indicates the probability of occurrence of defects at that location. The residual map and the likelihood map are then synthesized together to form an enhanced fusion map. Typically, the fusion map exhibits uniform gray levels over defect-free regions but distinct deviations over defective areas, which can be further thresholded to produce a binarized segmentation result. Our model can be unsupervisedly trained by feeding with a set of small-sized image patches picked from a few defect-free examples. The training is divided into several successively performed stages, each under an individual training strategy. The performance of the proposed method has been extensively evaluated by a variety of real fabric samples. The experimental results in comparison with other methods demonstrate its effectiveness in fabric defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助fash采纳,获得10
刚刚
cx发布了新的文献求助10
1秒前
2秒前
今后应助直率的惜寒采纳,获得10
3秒前
今后应助背书强采纳,获得10
4秒前
肚子饿了发布了新的文献求助10
4秒前
小星云发布了新的文献求助10
4秒前
6秒前
zuanyhou应助EM采纳,获得10
6秒前
casey发布了新的文献求助10
7秒前
无为完成签到 ,获得积分10
7秒前
7秒前
8秒前
coll88完成签到,获得积分10
8秒前
深情安青应助ranqi采纳,获得10
8秒前
chinbaor完成签到,获得积分10
10秒前
10秒前
BB发布了新的文献求助10
10秒前
niuhulushi发布了新的文献求助10
10秒前
领导范儿应助Wind采纳,获得10
11秒前
xiaozheng完成签到,获得积分10
11秒前
852应助葭月十七采纳,获得10
11秒前
华仔应助YOLO采纳,获得10
12秒前
13秒前
13秒前
14秒前
14秒前
ppg123应助alpha88采纳,获得10
14秒前
盒子先生完成签到,获得积分10
16秒前
Singularity应助背书强采纳,获得10
16秒前
浅尝离白应助细腻的沂采纳,获得20
17秒前
Ava应助甜美书瑶采纳,获得10
17秒前
fash发布了新的文献求助10
18秒前
18秒前
滴哒发布了新的文献求助10
19秒前
耀c发布了新的文献求助20
19秒前
20秒前
20秒前
坚强白凝发布了新的文献求助10
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247867
求助须知:如何正确求助?哪些是违规求助? 2891062
关于积分的说明 8266031
捐赠科研通 2559319
什么是DOI,文献DOI怎么找? 1388095
科研通“疑难数据库(出版商)”最低求助积分说明 650694
邀请新用户注册赠送积分活动 627581