Calculation of re-defined electrical double layer thickness in symmetrical electrolyte solutions

电解质 絮凝作用 德拜长度 胶体 Zeta电位 化学物理 表面电荷 纳米技术 化学 工程物理 材料科学 理论物理学 统计物理学 物理 离子 量子力学 纳米颗粒 物理化学 有机化学 电极
作者
Hadi Saboorian‐Jooybari,Zhangxin Chen
出处
期刊:Results in physics [Elsevier]
卷期号:15: 102501-102501 被引量:35
标识
DOI:10.1016/j.rinp.2019.102501
摘要

An electrical double layer (EDL) has crucial roles to play in diverse chemical/physical/biological phenomena and technological processes. The thickness of an EDL is one of the most important characteristics significantly affecting the value of zeta and streaming potentials, physicochemical properties of solutions, concentration polarization, the extent of stability of colloidal systems, coagulation and flocculation of colloids, etc. Although such thickness seems to be a straightforward characteristic of charged particles in contact with electrolyte solutions, there is no universal consensus among specialists on its definition and quantification. In spite of being incorporated in interface and colloid science for a century, the EDL thickness still has remained a dubious concept as there exist a variety of perceptions between scientists, researchers, and engineers. Unfortunately, the quantification of EDL thickness in current practices is founded primarily on rules of thumb with poor scientific justifications. Our comprehensive review of the literature shows that the EDL thickness is taken to be the Debye–Hückel length (i.e., κ-1) in a lot of applications, but sometimes the thickness is assumed to be equal to a few times κ-1. Such an assumption ignores the fact that the distribution of electric potential, and consequently EDL thickness, around a charged particle is affected by surface properties such as surface charge density and particle size. In other words, the common practice of κ-1-EDL-thickness suffers from not taking into account several other key factors contributing to the spatial extension of an EDL. This study is directed at development of theoretical physics-based formulas for accurate quantification of EDL thickness in symmetrical electrolyte solutions in different coordinate systems. The new analytical expressions are founded on the basis of exact or approximate solutions of the Poisson-Boltzmann (PB) equation for plate-like, cylindrical, and spherical charged particles. In fact, one of the targets of the present research work is to analytically address factors other than κ-1 affecting EDL thickness. Eventually, the degree of deviation of the commonly-used rule-of-thumb κ-1-thickness from the corresponding exact value is investigated by conducting sensitivity analyses over wide ranges of influential parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自信玥发布了新的文献求助10
1秒前
2秒前
wt发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
songjin完成签到 ,获得积分10
7秒前
8秒前
Wen发布了新的文献求助10
10秒前
健壮问兰发布了新的文献求助10
10秒前
11秒前
12秒前
慕青应助wt采纳,获得10
13秒前
沐夕完成签到,获得积分10
13秒前
13秒前
无霁之都发布了新的文献求助10
16秒前
16秒前
闪闪天晴完成签到,获得积分10
17秒前
麋鹿完成签到 ,获得积分10
18秒前
科研通AI2S应助123yyu采纳,获得10
18秒前
wallonce发布了新的文献求助30
19秒前
21秒前
今后应助小新小新采纳,获得10
21秒前
22秒前
24秒前
绿麦盲区完成签到,获得积分10
25秒前
wmk完成签到,获得积分10
27秒前
chenyunxia完成签到 ,获得积分10
29秒前
29秒前
zjw发布了新的文献求助20
29秒前
31秒前
丶呆久自然萌完成签到,获得积分10
32秒前
33秒前
Qianyun发布了新的文献求助10
33秒前
CodeCraft应助wallonce采纳,获得10
34秒前
金鱼完成签到 ,获得积分10
34秒前
35秒前
35秒前
岁岁安发布了新的文献求助10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304540
求助须知:如何正确求助?哪些是违规求助? 2938522
关于积分的说明 8489066
捐赠科研通 2613005
什么是DOI,文献DOI怎么找? 1427058
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647465