m6A Demethylase FTO Regulates Dopaminergic Neurotransmission Deficits Caused by Arsenite

多巴胺能 多巴胺 神经传递 亚砷酸盐 脱甲基酶 神经科学 5-羟色胺能 生物 化学 血清素 表观遗传学 生物化学 受体 有机化学 基因
作者
Lulu Bai,Qianghu Tang,Zhen Zou,Meng Pan,Baijie Tu,Yinyin Xia,Shuqun Cheng,Lina Zhang,Kai Yang,Shaoyu Mu,Xuefeng Wang,Xia Qin,Bo Lv,Xianqing Cao,Qizhong Qin,Xuejun Jiang,Chengzhi Chen
出处
期刊:Toxicological Sciences [Oxford University Press]
卷期号:165 (2): 431-446 被引量:76
标识
DOI:10.1093/toxsci/kfy172
摘要

Arsenite exposure is known to increase the risk of neurological disorders via alteration of dopamine content, but the detailed molecular mechanisms remain largely unknown. In this study, using both dopaminergic neurons of the PC-12 cell line and C57BL/6J mice as in vitro and in vivo models, our results demonstrated that 6 months of arsenite exposure via drinking water caused significant learning and memory impairment, anxiety-like behavior and alterations in conditioned avoidance and escape responses in male adult mice. We also were the first to reveal that the reduction in dopamine content induced by arsenite mainly resulted from deficits in dopaminergic neurotransmission in the synaptic cleft. The reversible N6- methyladenosine (m6A) modification is a novel epigenetic marker with broad roles in fundamental biological processes. We further evaluated the effect of arsenite on the m6A modification and tested if regulation of the m6A modification by demethylase fat mass and obesity-associated (FTO) could affect dopaminergic neurotransmission. Our data demonstrated for the first time that arsenite remarkably increased m6A modification, and FTO possessed the ability to alleviate the deficits in dopaminergic neurotransmission in response to arsenite exposure. Our findings not only provide valuable insight into the molecular neurotoxic pathogenesis of arsenite exposure, but are also the first evidence that regulation of FTO may be considered as a novel strategy for the prevention of arsenite-associated neurological disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
niao发布了新的文献求助10
2秒前
3秒前
wwwstt完成签到,获得积分20
4秒前
4秒前
冰冰完成签到 ,获得积分10
4秒前
wenbin发布了新的文献求助10
5秒前
6秒前
lzm发布了新的文献求助10
6秒前
7秒前
9秒前
英姑应助hhhhhh采纳,获得10
10秒前
10秒前
Fizz发布了新的文献求助30
12秒前
12秒前
lzm完成签到,获得积分10
13秒前
xiaozhuan321发布了新的文献求助10
13秒前
在水一方应助shanshan采纳,获得30
14秒前
手帕很忙完成签到,获得积分10
14秒前
xiaoz完成签到,获得积分10
14秒前
15秒前
隐形曼青应助李子木采纳,获得10
16秒前
lixiao应助刻苦的翠丝采纳,获得10
16秒前
ozy完成签到 ,获得积分10
17秒前
17秒前
18秒前
18秒前
David发布了新的文献求助30
19秒前
qqq完成签到 ,获得积分10
19秒前
Mike发布了新的文献求助30
20秒前
20秒前
英俊的铭应助胖虎啊采纳,获得10
21秒前
21秒前
21秒前
77应助RRRRRRR采纳,获得50
22秒前
韶冥茗发布了新的文献求助30
22秒前
23秒前
23秒前
hhhhhh发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587