Classification of triple-negative breast cancers based on Immunogenomic profiling

生物 免疫 免疫系统 癌症研究 获得性免疫系统 三阴性乳腺癌 乳腺癌 基因表达谱 免疫学 计算生物学 基因 癌症 遗传学 基因表达
作者
Yin He,Zehang Jiang,Chen Cai,Xiaosheng Wang
出处
期刊:Journal of Experimental & Clinical Cancer Research [Springer Nature]
卷期号:37 (1) 被引量:420
标识
DOI:10.1186/s13046-018-1002-1
摘要

Abundant evidence shows that triple-negative breast cancer (TNBC) is heterogeneous, and many efforts have been devoted to identifying TNBC subtypes on the basis of genomic profiling. However, few studies have explored the classification of TNBC specifically based on immune signatures that may facilitate the optimal stratification of TNBC patients responsive to immunotherapy.Using four publicly available TNBC genomics datasets, we classified TNBC on the basis of the immunogenomic profiling of 29 immune signatures. Unsupervised and supervised machine learning methods were used to perform the classification.We identified three TNBC subtypes that we named Immunity High (Immunity_H), Immunity Medium (Immunity_M), and Immunity Low (Immunity_L) and demonstrated that this classification was reliable and predictable by analyzing multiple different datasets. Immunity_H was characterized by greater immune cell infiltration and anti-tumor immune activities, as well as better survival prognosis compared to the other subtypes. Besides the immune signatures, some cancer-associated pathways were hyperactivated in Immunity_H, including apoptosis, calcium signaling, MAPK signaling, PI3K-Akt signaling, and RAS signaling. In contrast, Immunity_L presented depressed immune signatures and increased activation of cell cycle, Hippo signaling, DNA replication, mismatch repair, cell adhesion molecule binding, spliceosome, adherens junction function, pyrimidine metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and RNA polymerase pathways. Furthermore, we identified a gene co-expression subnetwork centered around five transcription factor (TF) genes (CORO1A, STAT4, BCL11B, ZNF831, and EOMES) specifically significant in the Immunity_H subtype and a subnetwork centered around two TF genes (IRF8 and SPI1) characteristic of the Immunity_L subtype.The identification of TNBC subtypes based on immune signatures has potential clinical implications for TNBC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Venus完成签到,获得积分10
1秒前
xl完成签到 ,获得积分10
1秒前
Yes0419完成签到,获得积分10
3秒前
不加香菜完成签到 ,获得积分10
5秒前
夏虫完成签到,获得积分10
6秒前
小摩尔完成签到 ,获得积分10
6秒前
zys完成签到 ,获得积分10
8秒前
南关三完成签到,获得积分10
9秒前
微雨若,,完成签到 ,获得积分10
10秒前
wjswift完成签到,获得积分10
12秒前
neckerzhu完成签到 ,获得积分10
14秒前
ivy完成签到 ,获得积分10
16秒前
scarlet完成签到 ,获得积分0
18秒前
peili完成签到,获得积分0
19秒前
小飞七完成签到 ,获得积分10
21秒前
23秒前
Doctor_Peng完成签到,获得积分10
27秒前
抹茶肥肠发布了新的文献求助30
27秒前
starleo完成签到,获得积分10
28秒前
hakuna_matata完成签到 ,获得积分10
28秒前
陈鹿华完成签到 ,获得积分10
28秒前
称心如意完成签到 ,获得积分10
29秒前
共享精神应助Monster采纳,获得10
33秒前
故城完成签到 ,获得积分10
34秒前
C_Li完成签到,获得积分10
35秒前
米博士完成签到,获得积分10
36秒前
CLTTTt完成签到,获得积分10
36秒前
新奇完成签到 ,获得积分10
38秒前
善学以致用应助抹茶肥肠采纳,获得10
38秒前
从心随缘完成签到 ,获得积分10
38秒前
eleusis完成签到 ,获得积分10
39秒前
杨杨完成签到 ,获得积分10
40秒前
四十四次日落完成签到 ,获得积分10
41秒前
squirrelcone完成签到 ,获得积分10
41秒前
漫画完成签到,获得积分10
42秒前
xjyyy完成签到 ,获得积分10
44秒前
44秒前
23421完成签到 ,获得积分10
46秒前
Muccio完成签到 ,获得积分10
47秒前
48秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539129
求助须知:如何正确求助?哪些是违规求助? 3116731
关于积分的说明 9326648
捐赠科研通 2814672
什么是DOI,文献DOI怎么找? 1547028
邀请新用户注册赠送积分活动 720722
科研通“疑难数据库(出版商)”最低求助积分说明 712192