亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diversity in Machine Learning

机器学习 计算机科学 人工智能 推论 多元化(营销策略) 过程(计算) 在线机器学习 多样性(政治) 计算学习理论 主动学习(机器学习) 人类学 操作系统 社会学 业务 营销
作者
Zhiqiang Gong,Ping Zhong,Weidong Hu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 64323-64350 被引量:74
标识
DOI:10.1109/access.2019.2917620
摘要

Machine learning methods have achieved good performance and been widely applied in various real-world applications. They can learn the model adaptively and be better fit for special requirements of different tasks. Generally, a good machine learning system is composed of plentiful training data, a good model training process, and an accurate inference. Many factors can affect the performance of the machine learning process, among which the diversity of the machine learning process is an important one. The diversity can help each procedure to guarantee a total good machine learning: diversity of the training data ensures that the training data can provide more discriminative information for the model, diversity of the learned model (diversity in parameters of each model or diversity among different base models) makes each parameter/model capture unique or complement information and the diversity in inference can provide multiple choices each of which corresponds to a specific plausible local optimal result. Even though the diversity plays an important role in machine learning process, there is no systematical analysis of the diversification in machine learning system. In this paper, we systematically summarize the methods to make data diversification, model diversification, and inference diversification in the machine learning process, respectively. In addition, the typical applications where the diversity technology improved the machine learning performance have been surveyed, including the remote sensing imaging tasks, machine translation, camera relocalization, image segmentation, object detection, topic modeling, and others. Finally, we discuss some challenges of the diversity technology in machine learning and point out some directions in future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
笔墨纸砚完成签到 ,获得积分10
27秒前
43秒前
田様应助Alice采纳,获得10
1分钟前
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
浮游应助cc采纳,获得10
1分钟前
FashionBoy应助cc采纳,获得10
1分钟前
尼古丁的味道完成签到 ,获得积分10
1分钟前
余呀余完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
鳄鱼不做饿梦完成签到,获得积分10
3分钟前
3分钟前
fangjc1024发布了新的文献求助10
3分钟前
3分钟前
Mcling完成签到,获得积分10
3分钟前
fangjc1024完成签到,获得积分10
3分钟前
3分钟前
旁边有堵墙完成签到 ,获得积分20
4分钟前
mc完成签到,获得积分10
4分钟前
4分钟前
orangel发布了新的文献求助10
4分钟前
林林林完成签到,获得积分10
4分钟前
大鼻子的新四岁完成签到,获得积分10
5分钟前
乔威完成签到,获得积分10
5分钟前
小马甲应助李涛采纳,获得10
5分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
万能图书馆应助小路采纳,获得10
6分钟前
6分钟前
李爱国应助orangel采纳,获得10
6分钟前
6分钟前
6分钟前
怕黑行恶发布了新的文献求助10
6分钟前
orangel发布了新的文献求助10
6分钟前
orangel完成签到,获得积分10
6分钟前
7分钟前
传奇3应助烨枫晨曦采纳,获得10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302798
求助须知:如何正确求助?哪些是违规求助? 4449837
关于积分的说明 13848726
捐赠科研通 4336166
什么是DOI,文献DOI怎么找? 2380799
邀请新用户注册赠送积分活动 1375751
关于科研通互助平台的介绍 1342107