Diversity in Machine Learning

机器学习 计算机科学 人工智能 推论 多元化(营销策略) 过程(计算) 在线机器学习 多样性(政治) 计算学习理论 主动学习(机器学习) 人类学 操作系统 社会学 业务 营销
作者
Zhiqiang Gong,Ping Zhong,Weidong Hu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 64323-64350 被引量:74
标识
DOI:10.1109/access.2019.2917620
摘要

Machine learning methods have achieved good performance and been widely applied in various real-world applications. They can learn the model adaptively and be better fit for special requirements of different tasks. Generally, a good machine learning system is composed of plentiful training data, a good model training process, and an accurate inference. Many factors can affect the performance of the machine learning process, among which the diversity of the machine learning process is an important one. The diversity can help each procedure to guarantee a total good machine learning: diversity of the training data ensures that the training data can provide more discriminative information for the model, diversity of the learned model (diversity in parameters of each model or diversity among different base models) makes each parameter/model capture unique or complement information and the diversity in inference can provide multiple choices each of which corresponds to a specific plausible local optimal result. Even though the diversity plays an important role in machine learning process, there is no systematical analysis of the diversification in machine learning system. In this paper, we systematically summarize the methods to make data diversification, model diversification, and inference diversification in the machine learning process, respectively. In addition, the typical applications where the diversity technology improved the machine learning performance have been surveyed, including the remote sensing imaging tasks, machine translation, camera relocalization, image segmentation, object detection, topic modeling, and others. Finally, we discuss some challenges of the diversity technology in machine learning and point out some directions in future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
老实巴交完成签到,获得积分10
2秒前
2秒前
2秒前
vinecho发布了新的文献求助30
2秒前
3秒前
tian完成签到,获得积分0
3秒前
3秒前
羞涩的渊思完成签到 ,获得积分10
4秒前
李爱国应助JoshuaChen采纳,获得10
4秒前
文章刻骨几人知完成签到,获得积分10
4秒前
一颗煤炭完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助lx840518采纳,获得10
6秒前
小马甲应助美满的曼寒采纳,获得10
6秒前
6秒前
凹凸曼发布了新的文献求助30
7秒前
7秒前
7秒前
HenryXiao关注了科研通微信公众号
8秒前
8秒前
哈哈哈哈哈哈完成签到,获得积分10
8秒前
天天摸鱼完成签到,获得积分10
8秒前
WQY发布了新的文献求助10
9秒前
Yuan关注了科研通微信公众号
9秒前
bkagyin应助迪迦采纳,获得30
9秒前
wocao完成签到 ,获得积分10
9秒前
彧辰完成签到 ,获得积分10
10秒前
10秒前
感动语蝶发布了新的文献求助30
11秒前
幽默的辣白菜完成签到,获得积分10
11秒前
粉红色泡泡关注了科研通微信公众号
11秒前
11秒前
xue关闭了xue文献求助
11秒前
11秒前
12秒前
12秒前
WuchangI发布了新的文献求助10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650