亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diversity in Machine Learning

机器学习 计算机科学 人工智能 推论 多元化(营销策略) 过程(计算) 在线机器学习 多样性(政治) 计算学习理论 主动学习(机器学习) 人类学 操作系统 社会学 业务 营销
作者
Zhiqiang Gong,Ping Zhong,Weidong Hu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 64323-64350 被引量:74
标识
DOI:10.1109/access.2019.2917620
摘要

Machine learning methods have achieved good performance and been widely applied in various real-world applications. They can learn the model adaptively and be better fit for special requirements of different tasks. Generally, a good machine learning system is composed of plentiful training data, a good model training process, and an accurate inference. Many factors can affect the performance of the machine learning process, among which the diversity of the machine learning process is an important one. The diversity can help each procedure to guarantee a total good machine learning: diversity of the training data ensures that the training data can provide more discriminative information for the model, diversity of the learned model (diversity in parameters of each model or diversity among different base models) makes each parameter/model capture unique or complement information and the diversity in inference can provide multiple choices each of which corresponds to a specific plausible local optimal result. Even though the diversity plays an important role in machine learning process, there is no systematical analysis of the diversification in machine learning system. In this paper, we systematically summarize the methods to make data diversification, model diversification, and inference diversification in the machine learning process, respectively. In addition, the typical applications where the diversity technology improved the machine learning performance have been surveyed, including the remote sensing imaging tasks, machine translation, camera relocalization, image segmentation, object detection, topic modeling, and others. Finally, we discuss some challenges of the diversity technology in machine learning and point out some directions in future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangermazi完成签到,获得积分10
21秒前
思源应助科研通管家采纳,获得10
31秒前
9527完成签到,获得积分10
46秒前
王维完成签到 ,获得积分10
59秒前
2分钟前
2分钟前
daiyu发布了新的文献求助30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
赘婿应助daiyu采纳,获得10
2分钟前
小龙完成签到,获得积分10
2分钟前
3分钟前
bing完成签到 ,获得积分10
3分钟前
小常发布了新的文献求助30
4分钟前
领导范儿应助蛋蛋采纳,获得10
4分钟前
4分钟前
长安完成签到,获得积分10
4分钟前
丘比特应助长安采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
艺霖大王完成签到,获得积分10
5分钟前
FashionBoy应助艺霖大王采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
长安发布了新的文献求助10
7分钟前
烟烟烟发布了新的文献求助10
7分钟前
烟烟烟完成签到,获得积分20
7分钟前
7分钟前
8分钟前
9分钟前
桃子爱学习完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003716
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691462