亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks

雅卡索引 分割 人工智能 计算机科学 模式识别(心理学) 鉴别器 卷积神经网络 生成对抗网络 深度学习 相似性(几何) Sørensen–骰子系数 数学 图像分割 图像(数学) 电信 探测器
作者
Xiongfeng Ma,Jinlong Wang,Xinpeng Zheng,Zhuangsheng Liu,Wansheng Long,Yaqin Zhang,Jun Wei,Guangming Lu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (10): 105006-105006 被引量:14
标识
DOI:10.1088/1361-6560/ab7e7f
摘要

Fibroglandular tissue (FGT) segmentation is a crucial step for quantitative analysis of background parenchymal enhancement (BPE) in magnetic resonance imaging (MRI), which is useful for breast cancer risk assessment. In this study, we develop an automated deep learning method based on a generative adversarial network (GAN) to identify the FGT region in MRI volumes and evaluate its impact on a specific clinical application. The GAN consists of an improved U-Net as a generator to generate FGT candidate areas and a patch deep convolutional neural network (DCNN) as a discriminator to evaluate the authenticity of the synthetic FGT region. The proposed method has two improvements compared to the classical U-Net: (1) the improved U-Net is designed to extract more features of the FGT region for a more accurate description of the FGT region; (2) a patch DCNN is designed for discriminating the authenticity of the FGT region generated by the improved U-Net, which makes the segmentation result more stable and accurate. A dataset of 100 three-dimensional (3D) bilateral breast MRI scans from 100 patients (aged 22-78 years) was used in this study with Institutional Review Board (IRB) approval. 3D hand-segmented FGT areas for all breasts were provided as a reference standard. Five-fold cross-validation was used in training and testing of the models. The Dice similarity coefficient (DSC) and Jaccard index (JI) values were evaluated to measure the segmentation accuracy. The previous method using classical U-Net was used as a baseline in this study. In the five partitions of the cross-validation set, the GAN achieved DSC and JI values of 87.0 ± 7.0% and 77.6 ± 10.1%, respectively, while the corresponding values obtained through by the baseline method were 81.1 ± 8.7% and 69.0 ± 11.3%, respectively. The proposed method is significantly superior to the previous method using U-Net. The FGT segmentation impacted the BPE quantification application in the following manner: the correlation coefficients between the quantified BPE value and BI-RADS BPE categories provided by the radiologist were 0.46 ± 0.15 (best: 0.63) based on GAN segmented FGT areas, while the corresponding correlation coefficients were 0.41 ± 0.16 (best: 0.60) based on baseline U-Net segmented FGT areas. BPE can be quantified better using the FGT areas segmented by the proposed GAN model than using the FGT areas segmented by the baseline U-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助ASXC采纳,获得10
7秒前
Omni完成签到,获得积分10
10秒前
ASXC完成签到,获得积分20
12秒前
绪方完成签到,获得积分10
14秒前
笨笨的怜雪完成签到 ,获得积分10
15秒前
我是老大应助wangxiaoyu采纳,获得10
16秒前
23秒前
Ava应助yyds采纳,获得10
24秒前
25秒前
29秒前
爆米花应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
CodeCraft应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
43秒前
44秒前
等待寄云完成签到 ,获得积分10
48秒前
49秒前
yyds发布了新的文献求助10
53秒前
LIn完成签到,获得积分10
54秒前
研妍完成签到,获得积分10
54秒前
55秒前
LIn发布了新的文献求助10
57秒前
NexusExplorer应助Watsun采纳,获得10
58秒前
CodeCraft应助Zed采纳,获得10
59秒前
123完成签到 ,获得积分10
1分钟前
1分钟前
无聊的听寒完成签到 ,获得积分10
1分钟前
媛媛完成签到 ,获得积分10
1分钟前
RTena.完成签到,获得积分10
1分钟前
1分钟前
标致如霜完成签到,获得积分10
1分钟前
1分钟前
zxx完成签到 ,获得积分10
1分钟前
标致如霜发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助大力的无声采纳,获得10
1分钟前
科目三应助大力的无声采纳,获得10
1分钟前
1分钟前
JamesPei应助大力的无声采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526498
求助须知:如何正确求助?哪些是违规求助? 3106931
关于积分的说明 9281903
捐赠科研通 2804438
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709554