催化作用
材料科学
氢化钯
可逆氢电极
氢化物
氢
纳米颗粒
钯
氢气储存
碳纤维
Atom(片上系统)
无机化学
密度泛函理论
光化学
电化学
物理化学
电极
纳米技术
金属
化学
计算化学
工作电极
有机化学
复合数
冶金
复合材料
嵌入式系统
计算机科学
作者
Qun He,Ji Hoon Lee,Daobin Liu,Yumeng Liu,Zhexi Lin,Zhenhua Xie,Sooyeon Hwang,Shyam Kattel,Li Song,Jingguang G. Chen
标识
DOI:10.1002/adfm.202000407
摘要
Abstract The electrochemical conversion of carbon dioxide (CO 2 ) into value‐added chemicals is regarded as one of the promising routes to mitigate CO 2 emission. A nitrogen‐doped carbon‐supported palladium (Pd) single‐atom catalyst that can catalyze CO 2 into CO with far higher mass activity than its Pd nanoparticle counterpart, for example, 373.0 and 28.5 mA mg −1 Pd , respectively, at −0.8 V versus reversible hydrogen electrode, is reported. A combination of in situ X‐ray characterization and density functional theory (DFT) calculation reveals that the PdN 4 site is the most likely active center for CO production without the formation of palladium hydride (PdH), which is essential for typical Pd nanoparticle catalysts. Furthermore, the well‐dispersed PdN 4 single‐atom site facilitates the stabilization of the adsorbed CO 2 intermediate, thereby enhancing electrocatalytic CO 2 reduction capability at low overpotentials. This work provides important insights into the structure‐activity relationship for single‐atom based electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI