Deep learning-based point-scanning super-resolution imaging

计算机科学 像素 帧(网络) 人工智能 点(几何) 分辨率(逻辑) 时间分辨率 计算机视觉 帧速率 噪音(视频) 图像分辨率 图像(数学) 光学 物理 电信 数学 几何学
作者
Linjing Fang,Fred Monroe,Sammy Weiser Novak,Lyndsey M. Kirk,Cara R. Schiavon,Seungyoon B. Yu,Tong Zhang,Melissa Wu,Kyle Kastner,Alaa Abdel Latif,Zijun Lin,Andrew Shaw,Yoshiyuki Kubota,John M. Mendenhall,Zhao Zhang,Gülçin Pekkurnaz,Kristen M. Harris,Jeremy Howard,Uri Manor
出处
期刊:Nature Methods [Springer Nature]
卷期号:18 (4): 406-416 被引量:125
标识
DOI:10.1038/s41592-021-01080-z
摘要

Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a ‘crappifier’ that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a ‘multi-frame’ PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org. Point-scanning super-resolution imaging uses deep learning to supersample undersampled images and enable time-lapse imaging of subcellular events. An accompanying ‘crappifier’ rapidly generates quality training data for robust performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
han完成签到,获得积分10
1秒前
1秒前
不吃芹菜完成签到,获得积分10
1秒前
2秒前
2秒前
zoloft发布了新的文献求助10
2秒前
2秒前
2秒前
火星上冥茗完成签到,获得积分10
3秒前
科研大角牛完成签到,获得积分10
4秒前
居家家完成签到 ,获得积分10
5秒前
凝子老师发布了新的文献求助10
6秒前
药学牛马发布了新的文献求助10
6秒前
威武画板完成签到,获得积分10
7秒前
Wonder罗发布了新的文献求助10
7秒前
001发布了新的文献求助10
8秒前
8秒前
齐桉完成签到 ,获得积分10
9秒前
cathy完成签到 ,获得积分10
10秒前
大有阳光完成签到,获得积分10
10秒前
36456657应助卫生纸采纳,获得10
11秒前
兰格格完成签到,获得积分10
11秒前
11秒前
12秒前
丰盛的煎饼应助凝子老师采纳,获得10
13秒前
姜小猪完成签到,获得积分10
14秒前
冬眠完成签到 ,获得积分10
15秒前
kaye完成签到 ,获得积分10
16秒前
张张完成签到,获得积分10
18秒前
小巧念寒发布了新的文献求助10
18秒前
yanmu2010完成签到,获得积分10
18秒前
通~发布了新的文献求助10
19秒前
20秒前
小白应助SUS采纳,获得10
20秒前
lipengjiajun应助xiangxiang采纳,获得10
21秒前
田様应助caoyy采纳,获得10
21秒前
biubiu发布了新的文献求助10
21秒前
钰LM完成签到,获得积分10
21秒前
22秒前
wangyun完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851