计算机科学
像素
帧(网络)
人工智能
点(几何)
分辨率(逻辑)
时间分辨率
计算机视觉
帧速率
噪音(视频)
图像分辨率
图像(数学)
光学
物理
电信
数学
几何学
作者
Linjing Fang,Fred Monroe,Sammy Weiser Novak,Lyndsey M. Kirk,Cara R. Schiavon,Seungyoon B. Yu,Tong Zhang,Melissa Wu,Kyle Kastner,Alaa Abdel Latif,Zijun Lin,Andrew Shaw,Yoshiyuki Kubota,John M. Mendenhall,Zhao Zhang,Gülçin Pekkurnaz,Kristen M. Harris,Jeremy Howard,Uri Manor
出处
期刊:Nature Methods
[Springer Nature]
日期:2021-03-08
卷期号:18 (4): 406-416
被引量:125
标识
DOI:10.1038/s41592-021-01080-z
摘要
Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a ‘crappifier’ that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a ‘multi-frame’ PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org. Point-scanning super-resolution imaging uses deep learning to supersample undersampled images and enable time-lapse imaging of subcellular events. An accompanying ‘crappifier’ rapidly generates quality training data for robust performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI