An Overview of Multi-Agent Reinforcement Learning from Game Theoretical Perspective

强化学习 透视图(图形) 计算机科学 领域(数学分析) 边疆 泥灰岩 博弈论 管理科学 人工智能 工程类 政治学 数理经济学 数学 数学分析 古生物学 构造盆地 生物 法学
作者
Yaodong Yang,Jun Wang
出处
期刊:Cornell University - arXiv 被引量:87
标识
DOI:10.48550/arxiv.2011.00583
摘要

Following the remarkable success of the AlphaGO series, 2019 was a booming year that witnessed significant advances in multi-agent reinforcement learning (MARL) techniques. MARL corresponds to the learning problem in a multi-agent system in which multiple agents learn simultaneously. It is an interdisciplinary domain with a long history that includes game theory, machine learning, stochastic control, psychology, and optimisation. Although MARL has achieved considerable empirical success in solving real-world games, there is a lack of a self-contained overview in the literature that elaborates the game theoretical foundations of modern MARL methods and summarises the recent advances. In fact, the majority of existing surveys are outdated and do not fully cover the recent developments since 2010. In this work, we provide a monograph on MARL that covers both the fundamentals and the latest developments in the research frontier. The goal of our monograph is to provide a self-contained assessment of the current state-of-the-art MARL techniques from a game theoretical perspective. We expect this work to serve as a stepping stone for both new researchers who are about to enter this fast-growing domain and existing domain experts who want to obtain a panoramic view and identify new directions based on recent advances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinyue完成签到,获得积分10
刚刚
感性的早晨完成签到,获得积分10
刚刚
刚刚
萝卜不困关注了科研通微信公众号
1秒前
2秒前
科目三应助zhjwu采纳,获得10
2秒前
same完成签到,获得积分10
3秒前
4秒前
李爱国应助Mexsol采纳,获得10
5秒前
5秒前
wanci应助平常的凝蕊采纳,获得10
6秒前
Drogoo完成签到,获得积分10
9秒前
10秒前
13857268599完成签到,获得积分10
10秒前
11秒前
comic发布了新的文献求助10
11秒前
11秒前
传奇3应助TTOM采纳,获得10
12秒前
科研通AI2S应助飞云采纳,获得10
12秒前
garatasari发布了新的文献求助10
14秒前
14秒前
随便不放假完成签到 ,获得积分10
14秒前
airplane给airplane的求助进行了留言
15秒前
15秒前
都不好听完成签到,获得积分10
16秒前
Singularity应助betty孙采纳,获得10
16秒前
16秒前
17秒前
研友_nxymlZ完成签到,获得积分10
17秒前
Hello应助zhang采纳,获得10
18秒前
20秒前
彭于晏应助JohnsonTse采纳,获得10
20秒前
上官若男应助元气小Liu采纳,获得10
21秒前
21秒前
专一完成签到,获得积分10
21秒前
慕青应助研友_nxymlZ采纳,获得10
21秒前
jin发布了新的文献求助10
22秒前
萝卜不困发布了新的文献求助10
23秒前
好柿花生发布了新的文献求助10
23秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075