Early occupational exposure to lead on neutrophil-to-lymphocyte ratio and genotoxicity

遗传毒性 淋巴细胞 职业暴露 铅(地质) 环境卫生 铅暴露 免疫学 医学 毒理 环境科学 毒性 生物 内科学 古生物学
作者
Meng Yu,Kan Wang,Tuanwei Wang,Yuting Tu,Shiyang Gong,Yunxia Zhang,Guanghui Zhang,William W. Au,David C. Christiani,Zhao‐lin Xia
出处
期刊:Environment International [Elsevier]
卷期号:151: 106448-106448 被引量:18
标识
DOI:10.1016/j.envint.2021.106448
摘要

Lead (Pb) is known to induce detrimental health effects in exposed populations, including hematotoxicity and genotoxicity. Complete blood count (CBC) is a cost-effective and easy way to determine toxicity, and variations in proportion of different types of leukocytes: neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) are further evidence of hematotoxicity. However, few studies have been conducted to systematically evaluate effects of occupational Pb exposure on NLR and LMR, and their associations with genotoxicity.Our study was aimed to systematically assess the effects of current occupational Pb exposure on NLR and LMR, and their associations with genotoxicity.Our investigation was performed on 1176 workers from a newly built battery factory in North China. The workers had just entered their current job position in recent years and most of them had no previous history of occupational exposure to Pb. Blood lead levels (BLLs) and leukocytes indices were detected for all participants. Cytokinesis-blocked micronucleus assay (MN; n = 675) and alkaline comet assay (% tail DNA; n = 869) were used to assess genotoxicity. Multivariate linear and Poisson regression analyses were conducted to examine associations between leukocytes indices, genotoxic biomarkers and BLLs with adjustment for covariates. Spearman correlation and mediation analyses were used to investigate relationships between NLR and genotoxicity.Among all the exposed workers, NLR increased with increasing BLLs. However, WBC and LMR did not change significantly. Significant and dose-dependent increases in both MN frequencies and % tail DNA were observed among groups with different exposure doses. Compared with the normal NLR group (1.48 ≤ NLR < 4.58), the high NLR group (NLR ≥ 4.58) had higher % tail DNA. In addition, there was a significant and positive association between NLR and % tail DNA among all the workers, and % tail DNA mediated 15% of the effect of Pb on increasing NLR.Our large-scale population study shows that Pb exposure increased NLR and induced genotoxicity. There was an association between elevated NLR and DNA damage. In addition, the mediation effect of % tail DNA on the relationship between BLLs and NLR provided mechanistic evidence that certain mechanisms, e.g. inflammation, may be involved in elevation of NLR from Pb exposure. Therefore, NLR may be a convenient and sensitive biomarker for indication of Pb toxicity. Further studies are needed to validate the proposed mechanism and NLR as a biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Li完成签到,获得积分10
2秒前
隐形曼青应助笨笨的晓夏采纳,获得10
3秒前
mementomori发布了新的文献求助10
3秒前
4秒前
7秒前
Akim应助11采纳,获得10
7秒前
范琴琴完成签到 ,获得积分10
8秒前
王京完成签到,获得积分10
8秒前
RuiXxxxx发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
潦草小狗完成签到 ,获得积分10
13秒前
略略略完成签到 ,获得积分10
13秒前
13秒前
天天快乐应助不开心我的采纳,获得10
14秒前
sevenhill应助hhh采纳,获得20
14秒前
饱满若灵发布了新的文献求助10
15秒前
nonochi666发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
RuiXxxxx完成签到,获得积分10
15秒前
吉吉发布了新的文献求助10
18秒前
mementomori完成签到,获得积分10
18秒前
19秒前
21秒前
CClaire发布了新的文献求助10
24秒前
赘婿应助nonochi666采纳,获得10
26秒前
丘比特应助缥缈橘子采纳,获得10
26秒前
27秒前
kk子发布了新的文献求助10
27秒前
28秒前
29秒前
29秒前
sunshine完成签到,获得积分10
29秒前
zqy完成签到,获得积分10
30秒前
30秒前
31秒前
所所应助霸气的幼蓉采纳,获得50
31秒前
直率的鹭洋完成签到 ,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491843
求助须知:如何正确求助?哪些是违规求助? 4590251
关于积分的说明 14429733
捐赠科研通 4522576
什么是DOI,文献DOI怎么找? 2477953
邀请新用户注册赠送积分活动 1463028
关于科研通互助平台的介绍 1435710