Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models

鉴定(生物学) 计算机科学 趋同(经济学) 数学优化 差异进化 突变 特征(语言学) 早熟收敛 算法 遗传算法 机器学习 数学 植物 生物 生物化学 化学 语言学 哲学 基因 经济 经济增长
作者
Hussein Mohammed Ridha,Ali Asghar Heidari,Mingjing Wang,Huiling Chen
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:209: 112660-112660 被引量:179
标识
DOI:10.1016/j.enconman.2020.112660
摘要

In order to realize the performance of the PV model before being installed, it is often indispensable to develop reliable and accurate parameter identification methods for dealing with the PV models. Up to now, several stochastic methods have been proposed to analyze the feature space of this problem. However, some of the stochastic-based methods may present unsatisfactory results due to their insufficient exploration and exploitation inclinations, and the multimodal and nonlinearity existed in PV parameters extraction problems. In this paper, a Boosted Harris Hawk’s Optimization (BHHO) technique is proposed to achieve a more stable model and effectively estimate the parameters of the single diode PV model. The BHHO method combines random exploratory steps of evolution inspired by the flower pollination algorithm (FPA) and a powerful mutation scheme of the differential evolution (DE) with 2-Opt algorithms. The proposed strategies not only help BHHO algorithm to accelerate the convergence rate but also assist it in scanning new regions of the search basins. The results demonstrate that the proposed BHHO is more accurate and reliable compared to the basic version and several well-established methods. The BHHO method was rigorously validated by using real experimental data under seven sunlight and temperature conditions. Furthermore, the statistical criteria indicate that the proposed BHHO method has lower errors among other peers, which is highly useful for real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兰先生发布了新的文献求助10
1秒前
大朋完成签到,获得积分10
1秒前
1秒前
Lucas应助workingwalking采纳,获得10
2秒前
2秒前
芒果完成签到,获得积分10
2秒前
CipherSage应助未来科研大佬采纳,获得10
3秒前
解羽完成签到,获得积分10
3秒前
ekko完成签到,获得积分20
4秒前
4秒前
aloong完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
汉堡包应助qaqfdmmj采纳,获得10
6秒前
zzzllove完成签到,获得积分10
6秒前
6秒前
可耐的宛丝完成签到,获得积分10
6秒前
幸未晚发布了新的文献求助10
7秒前
8秒前
无极微光应助照相机采纳,获得20
8秒前
8秒前
香蕉诗蕊应助解羽采纳,获得10
8秒前
8秒前
9秒前
nini应助麦麦欧巴采纳,获得10
9秒前
9秒前
9秒前
NexusExplorer应助吕喜梅采纳,获得10
9秒前
9秒前
陈杰完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
大宁完成签到,获得积分10
10秒前
aloong发布了新的文献求助10
10秒前
10秒前
打外星人和僵尸完成签到,获得积分10
11秒前
研友_VZG7GZ应助轻松盼雁采纳,获得10
11秒前
柯莱发布了新的文献求助10
11秒前
子予关注了科研通微信公众号
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726