传统医学
生姜
草本植物
医学
中医药
本草学
草药
替代医学
病理
作者
Yusheng Jia,Mengmeng Sun,Yuhua Shi,Zhihui Zhu,Eduard van Wijk,Roeland Van Wijk,Tinde van Andel,Mei Wang
标识
DOI:10.1186/s13020-020-0287-0
摘要
Abstract Background Investigation of aged Chinese herbal materials will help us to understand their use and sources in ancient time and broaden the historical perspective of Chinese material medica. To reach this aim, the basic understanding of aged herbal materials, including physical and chemical characters, is of great importance. Delayed luminescence (DL) technique was developed as a rapid, direct, systemic, objective and sample loss-free tool to characterize the properties of Chinese herbal materials. In this study, we measured DL values in aged Chinese herbal materials that were transported from Asia to Europe during the 20th century and stored in Naturalis Biodiversity Center and the Utrecht University museum, and compared these with modern material of the same species. Methods A hyperbolic function was used to extract four properties from the DL curves of Chinese herbal material from 1900, the 1950s and recently harvested products. Statistical tools, including the Student’s t test, One-way analysis of variance and Principal Component Analysis, were used to differentiate the DL properties of aged and contemporary collections of Glycyrrhiza spp. Curcuma aromatica Salisb., Zingiber officinale Roscoe, Alpinia officinarum Hance and Acorus calamus L. Results Our results showed that DL properties were significantly different between historical and contemporary Chinese herbal materials. Changes in DL values were species-dependent: the effects of storage time of DL properties were specific for each species. These outcomes help us not only in the identification of historical Chinese medicine products but also provides valuable data of the effect of storage time on herbal materials. Conclusion The simple, direct, rapid, and inexpensive measurements offered by DL provide a novel tool to assess the taxonomic identity of Chinese and other herbal materials and assess the differences in chemical properties with increasing storage time. Our results contribute to the further development of novel digital tools for the quality control of herbal materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI