可微函数
成对比较
人工智能
计算机科学
深度学习
姿势
图像配准
卷积神经网络
模式识别(心理学)
数学
图像(数学)
数学分析
作者
Christopher Choy,Wei Dong,Vladlen Koltun
标识
DOI:10.1109/cvpr42600.2020.00259
摘要
We present Deep Global Registration, a differentiable framework for pairwise registration of real-world 3D scans. Deep global registration is based on three modules: a 6-dimensional convolutional network for correspondence confidence prediction, a differentiable Weighted Procrustes algorithm for closed-form pose estimation, and a robust gradient-based SE(3) optimizer for pose refinement. Experiments demonstrate that our approach outperforms state-of-the-art methods, both learning-based and classical, on real-world data.
科研通智能强力驱动
Strongly Powered by AbleSci AI