Pensieve: Skewness-Aware Version Switching for Efficient Graph Processing

计算机科学 图形 算法
作者
Tangwei Ying,Hanhua Chen,Hai Jin
出处
期刊:International Conference on Management of Data 卷期号:: 699-713 被引量:4
标识
DOI:10.1145/3318464.3380590
摘要

Multi-version graph processing has recently attracted much research efforts. Existing multi-version graph storage designs use either copy-based schemes or delta-based schemes. A copy-based scheme stores every version separately and may lead to expensive space cost due to high storage redundancy. On the contrary, a delta based scheme only stores incremental deltas between different versions and relies on delta computation for version switching. In this work, we observe: 1) high degree vertices incur much more significant storage overheads during graph version evolving compared to low degree vertices; 2) the skewed access frequency among graph versions greatly influences the system performance for version reproducing. Based on the observations, we propose Pensieve, a skewness-aware multi-version graph processing system. Two factors contribute to the efficiency of Pensieve. First, Pensieve leverages a differentiated graph storage strategy that stores low degree vertices using copy-based scheme while stores high degree ones using delta-based scheme. Such a design achieves a good trade-off between storage cost and version switching time for multi-version graph processing. Second, the Pensieve graph storage exploits the time locality of graph version access and designs a novel last-root version switching scheme, which significantly improves the access efficiency for recent versions. We implement Pensieve on top of Ligra, and conduct comprehensive experiments to evaluate the performance of this design using large-scale datasets collected from real world systems. The results show that Pensieve substantially outperforms state-of-the-art designs in terms of memory consumption and version switching time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UltraLuo关注了科研通微信公众号
刚刚
小龙虾发布了新的文献求助10
1秒前
林祥胜完成签到 ,获得积分10
1秒前
123456完成签到,获得积分10
1秒前
htt发布了新的文献求助30
3秒前
忧心的硬币应助科研通管家采纳,获得200
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
大乐完成签到 ,获得积分10
4秒前
Damon完成签到,获得积分10
4秒前
华仔应助羊咩咩采纳,获得10
5秒前
乌拉拉啦啦啦完成签到 ,获得积分10
7秒前
带点脑子读研求求你了完成签到,获得积分10
8秒前
小强给guozizi的求助进行了留言
9秒前
JamesPei应助w1采纳,获得10
10秒前
10秒前
get完成签到,获得积分10
10秒前
10秒前
10秒前
时尚的芮完成签到,获得积分10
11秒前
13秒前
无题发布了新的文献求助10
13秒前
13秒前
飘逸之玉发布了新的文献求助60
14秒前
wanci应助烂漫臻采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
动听的雅绿完成签到 ,获得积分10
15秒前
zzly完成签到,获得积分10
16秒前
miao123发布了新的文献求助10
16秒前
233完成签到 ,获得积分10
17秒前
北譩发布了新的文献求助10
17秒前
雪白尔琴发布了新的文献求助10
18秒前
shinysparrow完成签到,获得积分0
18秒前
华仔应助Y垚采纳,获得10
19秒前
斯文败类应助忐忑的鬼神采纳,获得10
19秒前
勤奋向真完成签到,获得积分10
20秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836