计算流体力学
螺旋桨
推力
海洋工程
唤醒
流入
导管(解剖学)
航空航天工程
推进器
推进
抽吸
空气动力学
机械
工程类
物理
机械工程
医学
病理
作者
Tao Zhang,George N. Barakos
出处
期刊:Journal of The American Helicopter Society
[American Helicopter Society]
日期:2020-10-14
卷期号:66 (1): 1-28
被引量:18
标识
DOI:10.4050/jahs.66.012008
摘要
This paper presents validation and assessment of ducted propellers for aircraft propulsion. Numerical methods and simulation strategies are put forward, including steady/unsteady high-fidelity computational fluid dynamics (CFD) simulations and simpler momentum-based methods. The validation and comparisons of the methods are made using a ducted propeller proposed by NASA. Simulations are also performed and analyzed at extended advance ratios, blade pitch setting, and cross-wind angles. Comparisons are also made with open propeller counterparts. The ducted propeller shows superior performance over its unducted counterpart in hover and at low advance ratios. The major thrust gain is identified from the combination of duct leading-edge suction and the higher pressure at the diffuser exit. The propeller is off-loaded due to the higher inflow velocities. The ducted propeller is also shown to have less intrusive wake features at low axial speeds. However, as the advance ratio increases, the duct thrust contribution becomes negative and the ducted propeller becomes deficient, due to growing high-pressure areas at the leading edge. At cross-wind, high-fidelity CFD simulations offer accurate aerodynamic loads predictions despite the complex flow features. The duct surface separation is found to be delayed due to the propeller suction, while the propeller is shown shielded by the duct, thereby suffering less from the unbalanced inflow velocities. Decomposition of induced velocities by each part is carried out and presented. A large, nonlinear extra induction component, due to mutual interactions of the duct and the propeller, is observed and found favorable for the performance augmentation.
科研通智能强力驱动
Strongly Powered by AbleSci AI