多孔介质
曲折
混合(物理)
色散(光学)
机械
材料科学
欧拉路径
平流
粒子(生态学)
统计物理学
物理
比例(比率)
多孔性
长度刻度
经典力学
拉格朗日
热力学
地质学
光学
海洋学
复合材料
量子力学
数学物理
作者
Alexandre Puyguiraud,Philippe Gouze,Marco Dentz
标识
DOI:10.1103/physrevlett.126.164501
摘要
We study the interplay of pore-scale mixing and network-scale advection through heterogeneous porous media, and its role for the evolution and asymptotic behavior of hydrodynamic dispersion. In a Lagrangian framework, we identify three fundamental mechanisms of pore-scale mixing that determine large scale particle motion, namely, the smoothing of intrapore velocity contrasts, the increase of the tortuosity of particle paths, and the setting of a maximum time for particle transitions. Based on these mechanisms, we derive a theory that predicts anomalous and normal hydrodynamic dispersion in terms of the characteristic pore length, Eulerian velocity distribution, and P\'eclet number.
科研通智能强力驱动
Strongly Powered by AbleSci AI