TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG

过度拟合 计算机科学 人工智能 管道(软件) 深度学习 睡眠阶段 频道(广播) 机器学习 超参数 脑电图 睡眠(系统调用) 模式识别(心理学) 原始数据 多导睡眠图 人工神经网络 操作系统 精神科 计算机网络 程序设计语言 心理学
作者
Akara Supratak,Yike Guo
标识
DOI:10.1109/embc44109.2020.9176741
摘要

Deep learning has become popular for automatic sleep stage scoring due to its capability to extract useful features from raw signals. Most of the existing models, however, have been overengineered to consist of many layers or have introduced additional steps in the processing pipeline, such as converting signals to spectrogram-based images. They require to be trained on a large dataset to prevent the overfitting problem (but most of the sleep datasets contain a limited amount of class-imbalanced data) and are difficult to be applied (as there are many hyperparameters to be configured in the pipeline). In this paper, we propose an efficient deep learning model, named TinySleepNet, and a novel technique to effectively train the model end-to-end for automatic sleep stage scoring based on raw single-channel EEG. Our model consists of a less number of model parameters to be trained compared to the existing ones, requiring a less amount of training data and computational resources. Our training technique incorporates data augmentation that can make our model be more robust the shift along the time axis, and can prevent the model from remembering the sequence of sleep stages. We evaluated our model on seven public sleep datasets that have different characteristics in terms of scoring criteria and recording channels and environments. The results show that, with the same model architecture and the training parameters, our method achieves a similar (or better) performance compared to the state-of-the-art methods on all datasets. This demonstrates that our method can generalize well to the largest number of different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助种花家的狗狗采纳,获得10
刚刚
李喵喵发布了新的文献求助30
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
doctorw发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
任寒松发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
宅了五百年完成签到,获得积分10
3秒前
李健的小迷弟应助Tengami采纳,获得40
3秒前
boltos完成签到,获得积分20
4秒前
深情安青应助无敌小宽哥采纳,获得10
4秒前
4秒前
默存完成签到,获得积分10
4秒前
奋斗水香发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
送你一颗流星完成签到,获得积分10
5秒前
TTTT发布了新的文献求助10
6秒前
fxx发布了新的文献求助10
6秒前
6秒前
xxx发布了新的文献求助10
7秒前
木浮生完成签到,获得积分10
7秒前
默存发布了新的文献求助10
7秒前
乔an完成签到,获得积分10
8秒前
8秒前
無羡发布了新的文献求助10
8秒前
诚心钢笔完成签到 ,获得积分10
8秒前
9秒前
研友_VZG7GZ应助喻初原采纳,获得10
9秒前
任寒松完成签到,获得积分10
9秒前
可爱的函函应助xing采纳,获得10
9秒前
ht发布了新的文献求助10
9秒前
LM完成签到,获得积分10
9秒前
彭于晏应助Pa1mary采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406