TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG

过度拟合 计算机科学 人工智能 管道(软件) 深度学习 睡眠阶段 频道(广播) 机器学习 超参数 脑电图 睡眠(系统调用) 模式识别(心理学) 原始数据 多导睡眠图 人工神经网络 操作系统 精神科 计算机网络 程序设计语言 心理学
作者
Akara Supratak,Yike Guo
标识
DOI:10.1109/embc44109.2020.9176741
摘要

Deep learning has become popular for automatic sleep stage scoring due to its capability to extract useful features from raw signals. Most of the existing models, however, have been overengineered to consist of many layers or have introduced additional steps in the processing pipeline, such as converting signals to spectrogram-based images. They require to be trained on a large dataset to prevent the overfitting problem (but most of the sleep datasets contain a limited amount of class-imbalanced data) and are difficult to be applied (as there are many hyperparameters to be configured in the pipeline). In this paper, we propose an efficient deep learning model, named TinySleepNet, and a novel technique to effectively train the model end-to-end for automatic sleep stage scoring based on raw single-channel EEG. Our model consists of a less number of model parameters to be trained compared to the existing ones, requiring a less amount of training data and computational resources. Our training technique incorporates data augmentation that can make our model be more robust the shift along the time axis, and can prevent the model from remembering the sequence of sleep stages. We evaluated our model on seven public sleep datasets that have different characteristics in terms of scoring criteria and recording channels and environments. The results show that, with the same model architecture and the training parameters, our method achieves a similar (or better) performance compared to the state-of-the-art methods on all datasets. This demonstrates that our method can generalize well to the largest number of different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
肖果完成签到 ,获得积分10
3秒前
3秒前
Lucas应助白洛寒采纳,获得10
3秒前
yuan发布了新的文献求助10
4秒前
4秒前
所所应助lx采纳,获得10
4秒前
zyc发布了新的文献求助10
4秒前
寒梅恋雪完成签到 ,获得积分10
5秒前
长之欠发布了新的文献求助10
6秒前
俏皮皮带关注了科研通微信公众号
6秒前
科研通AI6应助阿肖呀采纳,获得10
7秒前
9秒前
nan11发布了新的文献求助10
9秒前
9秒前
10秒前
tian完成签到,获得积分10
10秒前
水蜜桃完成签到 ,获得积分10
10秒前
RED发布了新的文献求助10
13秒前
13秒前
15秒前
GingerF应助Liu采纳,获得50
15秒前
lms发布了新的文献求助10
15秒前
16秒前
我爱睡觉完成签到,获得积分20
16秒前
17秒前
18秒前
气球洋洋完成签到,获得积分10
18秒前
18秒前
18秒前
20秒前
jiejie321发布了新的文献求助10
21秒前
21秒前
我爱睡觉发布了新的文献求助10
21秒前
彭于晏应助老仙翁采纳,获得30
21秒前
Jasper应助Marshzz采纳,获得10
21秒前
wsy发布了新的文献求助30
22秒前
22秒前
酷炫绾绾完成签到,获得积分10
23秒前
俏皮皮带发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838