TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG

过度拟合 计算机科学 人工智能 管道(软件) 深度学习 睡眠阶段 频道(广播) 机器学习 超参数 脑电图 睡眠(系统调用) 模式识别(心理学) 原始数据 多导睡眠图 人工神经网络 心理学 计算机网络 精神科 程序设计语言 操作系统
作者
Akara Supratak,Yike Guo
标识
DOI:10.1109/embc44109.2020.9176741
摘要

Deep learning has become popular for automatic sleep stage scoring due to its capability to extract useful features from raw signals. Most of the existing models, however, have been overengineered to consist of many layers or have introduced additional steps in the processing pipeline, such as converting signals to spectrogram-based images. They require to be trained on a large dataset to prevent the overfitting problem (but most of the sleep datasets contain a limited amount of class-imbalanced data) and are difficult to be applied (as there are many hyperparameters to be configured in the pipeline). In this paper, we propose an efficient deep learning model, named TinySleepNet, and a novel technique to effectively train the model end-to-end for automatic sleep stage scoring based on raw single-channel EEG. Our model consists of a less number of model parameters to be trained compared to the existing ones, requiring a less amount of training data and computational resources. Our training technique incorporates data augmentation that can make our model be more robust the shift along the time axis, and can prevent the model from remembering the sequence of sleep stages. We evaluated our model on seven public sleep datasets that have different characteristics in terms of scoring criteria and recording channels and environments. The results show that, with the same model architecture and the training parameters, our method achieves a similar (or better) performance compared to the state-of-the-art methods on all datasets. This demonstrates that our method can generalize well to the largest number of different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助rockxie采纳,获得10
刚刚
keyanxiaobai完成签到,获得积分10
刚刚
刚刚
1秒前
快快跑咯发布了新的文献求助10
1秒前
破伤疯完成签到,获得积分10
1秒前
1秒前
丘比特应助俊俊采纳,获得30
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
牟牟完成签到,获得积分20
2秒前
汉堡包应助reze采纳,获得10
2秒前
2秒前
研ZZ发布了新的文献求助10
3秒前
3秒前
大模型应助冷静的谷云采纳,获得10
3秒前
危机的秋双完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
Owen应助JM_meng采纳,获得10
4秒前
刘小源发布了新的文献求助20
4秒前
EMC完成签到,获得积分10
4秒前
酷波er应助yian007采纳,获得10
4秒前
5秒前
5秒前
sx发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
香蕉觅云应助正直帆布鞋采纳,获得10
5秒前
5秒前
破伤疯发布了新的文献求助10
6秒前
sharkmelon应助我想毕业采纳,获得10
6秒前
6秒前
无所谓发布了新的文献求助10
6秒前
6秒前
DustxhX发布了新的文献求助10
7秒前
7秒前
一站到底发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769