TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG

过度拟合 计算机科学 人工智能 管道(软件) 深度学习 睡眠阶段 频道(广播) 机器学习 超参数 脑电图 睡眠(系统调用) 模式识别(心理学) 原始数据 多导睡眠图 人工神经网络 操作系统 精神科 计算机网络 程序设计语言 心理学
作者
Akara Supratak,Yike Guo
标识
DOI:10.1109/embc44109.2020.9176741
摘要

Deep learning has become popular for automatic sleep stage scoring due to its capability to extract useful features from raw signals. Most of the existing models, however, have been overengineered to consist of many layers or have introduced additional steps in the processing pipeline, such as converting signals to spectrogram-based images. They require to be trained on a large dataset to prevent the overfitting problem (but most of the sleep datasets contain a limited amount of class-imbalanced data) and are difficult to be applied (as there are many hyperparameters to be configured in the pipeline). In this paper, we propose an efficient deep learning model, named TinySleepNet, and a novel technique to effectively train the model end-to-end for automatic sleep stage scoring based on raw single-channel EEG. Our model consists of a less number of model parameters to be trained compared to the existing ones, requiring a less amount of training data and computational resources. Our training technique incorporates data augmentation that can make our model be more robust the shift along the time axis, and can prevent the model from remembering the sequence of sleep stages. We evaluated our model on seven public sleep datasets that have different characteristics in terms of scoring criteria and recording channels and environments. The results show that, with the same model architecture and the training parameters, our method achieves a similar (or better) performance compared to the state-of-the-art methods on all datasets. This demonstrates that our method can generalize well to the largest number of different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助一一采纳,获得10
1秒前
gxffxf发布了新的文献求助10
1秒前
打打应助杨洋采纳,获得10
2秒前
悲伤香菇酱完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
3秒前
浮游应助着急的凌青采纳,获得10
4秒前
Percy发布了新的文献求助30
4秒前
哈哈哈发布了新的文献求助10
4秒前
叶赛文完成签到,获得积分10
5秒前
SYX完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
9秒前
11秒前
13秒前
lsx发布了新的文献求助10
13秒前
dili发布了新的文献求助20
13秒前
13秒前
Akim应助富贵李采纳,获得10
13秒前
慕青应助bobo采纳,获得10
14秒前
鬼豆完成签到,获得积分10
14秒前
14秒前
老姚发布了新的文献求助10
15秒前
15秒前
我要向阳而生完成签到 ,获得积分10
15秒前
111完成签到,获得积分10
15秒前
16秒前
852应助乐观笑南采纳,获得10
16秒前
17秒前
17秒前
17秒前
浮游应助Percy采纳,获得10
17秒前
sswbzh应助xxsw采纳,获得200
18秒前
18秒前
lls发布了新的文献求助10
18秒前
wf0806发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145