TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG

过度拟合 计算机科学 人工智能 管道(软件) 深度学习 睡眠阶段 频道(广播) 机器学习 超参数 脑电图 睡眠(系统调用) 模式识别(心理学) 原始数据 多导睡眠图 人工神经网络 心理学 计算机网络 精神科 程序设计语言 操作系统
作者
Akara Supratak,Yike Guo
标识
DOI:10.1109/embc44109.2020.9176741
摘要

Deep learning has become popular for automatic sleep stage scoring due to its capability to extract useful features from raw signals. Most of the existing models, however, have been overengineered to consist of many layers or have introduced additional steps in the processing pipeline, such as converting signals to spectrogram-based images. They require to be trained on a large dataset to prevent the overfitting problem (but most of the sleep datasets contain a limited amount of class-imbalanced data) and are difficult to be applied (as there are many hyperparameters to be configured in the pipeline). In this paper, we propose an efficient deep learning model, named TinySleepNet, and a novel technique to effectively train the model end-to-end for automatic sleep stage scoring based on raw single-channel EEG. Our model consists of a less number of model parameters to be trained compared to the existing ones, requiring a less amount of training data and computational resources. Our training technique incorporates data augmentation that can make our model be more robust the shift along the time axis, and can prevent the model from remembering the sequence of sleep stages. We evaluated our model on seven public sleep datasets that have different characteristics in terms of scoring criteria and recording channels and environments. The results show that, with the same model architecture and the training parameters, our method achieves a similar (or better) performance compared to the state-of-the-art methods on all datasets. This demonstrates that our method can generalize well to the largest number of different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乔乔兔发布了新的文献求助10
刚刚
浮游应助echo采纳,获得10
1秒前
浮游应助echo采纳,获得10
1秒前
小羊发布了新的文献求助10
2秒前
2秒前
yrw完成签到,获得积分10
3秒前
浮游应助麦麦采纳,获得10
3秒前
3秒前
NaCl发布了新的文献求助10
3秒前
3秒前
4秒前
MISA完成签到 ,获得积分10
5秒前
5秒前
5秒前
万能图书馆应助瘦瘦怀亦采纳,获得10
6秒前
6秒前
xiyou完成签到,获得积分10
7秒前
24发布了新的文献求助10
7秒前
坚强冷荷完成签到 ,获得积分10
7秒前
8秒前
K甲完成签到,获得积分10
9秒前
十八完成签到,获得积分10
9秒前
444发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
JamesPei应助乔乔兔采纳,获得10
10秒前
热情若翠完成签到,获得积分10
10秒前
12秒前
12秒前
嘎嘎完成签到,获得积分10
13秒前
13秒前
zhaoqian完成签到,获得积分10
13秒前
Grant发布了新的文献求助10
13秒前
充电宝应助钟沐晨采纳,获得10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
Jasper应助清晨采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025