Ultrasound Image Segmentation Method for Thyroid Nodules Using ASPP Fusion Features

人工智能 计算机科学 棱锥(几何) 分割 模式识别(心理学) 特征(语言学) 联营 背景(考古学) 计算机视觉 图像分割 甲状腺结节 数学 甲状腺 内科学 哲学 生物 古生物学 医学 语言学 几何学
作者
Yating Wu,Xueliang Shen,Feng Bu,Jin Tian
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 172457-172466 被引量:22
标识
DOI:10.1109/access.2020.3022249
摘要

Ultrasound imaging technology plays an important role to assist doctors in diagnosing thyroid nodules. The tissue structure around the thyroid is very complex, which makes it difficult to segment and extract the ultrasound image of thyroid nodules accurately. For address this problem, this paper proposes a model algorithm for thyroid nodule ultrasound image segmentation using ASPP fusion features. First, spatial pyramid pooling and depthwise separable convolution are combined in order to solve the problem that the size of the mapping feature will change in the process of better capturing the context information. Besides, Atrous Spatial Pyramid Pooling (ASPP) is proposed to achieve the purpose of processing input image channel and spatial information separately. In order to appropriately reduce the dimension and size of feature images, a $1\times 1$ convolution operation is performed before each convolution calculation, and the model size is optimized. In the decoding stage, decoder module appropriately adjusts the feature map with a relatively low resolution previously from decoder module, and sets the output channel number of two convolutions to the same value. All features have the same dimension by adjustment, and features can be fused by element-wise summation. Finally, Dice Similarity Coefficient (DSC), Prevent Match (PM) and Correspondence Patio (CR) are used as evaluation criteria to compare with other model algorithms. The experimental results show that the proposed model can significantly improve the segmentation effect of ultrasound images for thyroid nodules compared with traditional models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CipherSage应助aaaaa采纳,获得10
3秒前
4秒前
4秒前
今后应助何东玲采纳,获得10
5秒前
爆米花应助又欠采纳,获得10
6秒前
是小越啊完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
狗不理完成签到,获得积分10
11秒前
12秒前
Rookie发布了新的文献求助10
12秒前
13秒前
非要起名完成签到 ,获得积分10
14秒前
yi2362发布了新的文献求助10
15秒前
12123浪发布了新的文献求助10
15秒前
哈哈给哈发布了新的文献求助10
16秒前
guaishou发布了新的文献求助10
16秒前
17秒前
就吧发布了新的文献求助10
17秒前
lyz发布了新的文献求助10
22秒前
zlw121完成签到 ,获得积分10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
xzy998应助努力采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
Tourist应助科研通管家采纳,获得10
23秒前
changping应助科研通管家采纳,获得10
23秒前
思源应助科研通管家采纳,获得10
23秒前
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
24秒前
Tourist应助科研通管家采纳,获得30
24秒前
大个应助科研通管家采纳,获得10
24秒前
24秒前
TAT完成签到 ,获得积分10
24秒前
wwz应助科研通管家采纳,获得10
24秒前
火星上惜天完成签到 ,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298580
求助须知:如何正确求助?哪些是违规求助? 4447072
关于积分的说明 13841540
捐赠科研通 4332544
什么是DOI,文献DOI怎么找? 2378222
邀请新用户注册赠送积分活动 1373488
关于科研通互助平台的介绍 1339077