Ultrasound Image Segmentation Method for Thyroid Nodules Using ASPP Fusion Features

人工智能 计算机科学 棱锥(几何) 分割 模式识别(心理学) 特征(语言学) 联营 背景(考古学) 计算机视觉 图像分割 甲状腺结节 数学 甲状腺 古生物学 语言学 哲学 几何学 生物 医学 内科学
作者
Yating Wu,Xueliang Shen,Feng Bu,Jin Tian
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 172457-172466 被引量:22
标识
DOI:10.1109/access.2020.3022249
摘要

Ultrasound imaging technology plays an important role to assist doctors in diagnosing thyroid nodules. The tissue structure around the thyroid is very complex, which makes it difficult to segment and extract the ultrasound image of thyroid nodules accurately. For address this problem, this paper proposes a model algorithm for thyroid nodule ultrasound image segmentation using ASPP fusion features. First, spatial pyramid pooling and depthwise separable convolution are combined in order to solve the problem that the size of the mapping feature will change in the process of better capturing the context information. Besides, Atrous Spatial Pyramid Pooling (ASPP) is proposed to achieve the purpose of processing input image channel and spatial information separately. In order to appropriately reduce the dimension and size of feature images, a $1\times 1$ convolution operation is performed before each convolution calculation, and the model size is optimized. In the decoding stage, decoder module appropriately adjusts the feature map with a relatively low resolution previously from decoder module, and sets the output channel number of two convolutions to the same value. All features have the same dimension by adjustment, and features can be fused by element-wise summation. Finally, Dice Similarity Coefficient (DSC), Prevent Match (PM) and Correspondence Patio (CR) are used as evaluation criteria to compare with other model algorithms. The experimental results show that the proposed model can significantly improve the segmentation effect of ultrasound images for thyroid nodules compared with traditional models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒顾发布了新的文献求助10
刚刚
886发布了新的文献求助10
刚刚
大模型应助sje采纳,获得10
1秒前
1秒前
水尽云生处完成签到,获得积分10
1秒前
2秒前
许多知识完成签到,获得积分10
3秒前
雷义完成签到,获得积分10
4秒前
4秒前
AD完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助sky采纳,获得10
6秒前
7秒前
靓丽寄文完成签到 ,获得积分10
7秒前
Dado应助AQQ采纳,获得10
8秒前
至幸发布了新的文献求助10
9秒前
挖掘机应助菠菜采纳,获得200
9秒前
鲜于枫完成签到,获得积分10
9秒前
Orange应助斯文冷梅采纳,获得10
9秒前
杰哥完成签到,获得积分10
9秒前
10秒前
10秒前
赘婿应助煜琪采纳,获得10
10秒前
10秒前
NexusExplorer应助酸柠檬本檬采纳,获得10
11秒前
12秒前
鲸落关注了科研通微信公众号
13秒前
慕凝完成签到,获得积分10
13秒前
我是张铁柱·完成签到,获得积分10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
汉诺威橡树完成签到,获得积分10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得30
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011574
求助须知:如何正确求助?哪些是违规求助? 3551304
关于积分的说明 11308331
捐赠科研通 3285566
什么是DOI,文献DOI怎么找? 1811101
邀请新用户注册赠送积分活动 886780
科研通“疑难数据库(出版商)”最低求助积分说明 811638