Optimizing the working mechanism of the CsPbBr3-based inorganic perovskite solar cells for enhanced efficiency

材料科学 钙钛矿(结构) 能量转换效率 光电子学 异质结 带隙 钙钛矿太阳能电池 载流子 电流密度 开路电压 化学工程 电压 电气工程 量子力学 物理 工程类
作者
Saad Ullah,Ping Liu,Jiaming Wang,Peixin Yang,Linlin Liu,Shi-e Yang,Haizhong Guo,Tianyu Xia,Yongsheng Chen
出处
期刊:Solar Energy [Elsevier BV]
卷期号:209: 79-84 被引量:54
标识
DOI:10.1016/j.solener.2020.09.003
摘要

Recently, inorganic perovskite solar cells (PSCs) based on CsPbBr3 have triggered incredible interest due to the demonstrated excellent stability against thermal and high humidity environmental conditions. However, the power conversion efficiency (PCE) of the CsPbBr3-based PSCs is still lower than that of the organic-inorganic hybrid one, because of the large band gap and serious charge recombination at the interface or inside the device. Here, the working mechanism of the devices with normal n-i-p planar structure is modeled and investigated using SCAPS 1D simulation software. The simulation results state that the proper band structure of PSCs is crucial to carrier separation and transport. The high interface recombination, originated from the large band offsets of the electron transport material (ETM)/absorber and absorber/hole transport material (HTM) respectively, can be effectively diminished with the continuous gradient junction design of the absorber, and a PCE of 11.58% is obtained with a high open-circuit voltage (VOC) of 1.68 V. Moreover, by building a heterojunction bilayer absorption scenario of CsPbIBr2/CsPbBr3 and employing ZnOS and Cu2ZnSnS4 films as the ETM and HTM respectively, the PCE of PSCs is further increased to 15.89%, caused mainly by the enhancement in short-current density (JSC). Moreover, reducing the interface defect density is also very important to improve the performance of PSCs. These results will provide theoretical guidance for improving the performance of the CsPbBr3-based PSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助大方冬寒采纳,获得10
刚刚
瀚泛发布了新的文献求助10
1秒前
浮游应助kanaty采纳,获得10
4秒前
大模型应助先字母采纳,获得10
5秒前
NexusExplorer应助肖的花园采纳,获得10
6秒前
野性的小懒虫完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助100
7秒前
9秒前
9秒前
11秒前
12秒前
13秒前
13秒前
一颗盐完成签到,获得积分10
15秒前
15秒前
芯芯今天读文献了吗完成签到,获得积分10
15秒前
NexusExplorer应助dll采纳,获得10
15秒前
16秒前
janice发布了新的文献求助10
17秒前
18秒前
应见惯发布了新的文献求助10
18秒前
19秒前
TTT发布了新的文献求助10
19秒前
JamesPei应助海风采纳,获得10
20秒前
20秒前
1111111发布了新的文献求助10
20秒前
有话好好硕完成签到 ,获得积分10
21秒前
张健发布了新的文献求助10
22秒前
mic发布了新的文献求助10
23秒前
23秒前
丘比特应助Du采纳,获得10
24秒前
24秒前
24秒前
英俊的铭应助小威廉采纳,获得10
25秒前
janice完成签到,获得积分10
25秒前
26秒前
量子星尘发布了新的文献求助50
27秒前
Owen应助dw采纳,获得50
27秒前
dll发布了新的文献求助10
27秒前
LUNIX发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886348
求助须知:如何正确求助?哪些是违规求助? 4171310
关于积分的说明 12944605
捐赠科研通 3931793
什么是DOI,文献DOI怎么找? 2157251
邀请新用户注册赠送积分活动 1175706
关于科研通互助平台的介绍 1080197