Optimizing the working mechanism of the CsPbBr3-based inorganic perovskite solar cells for enhanced efficiency

材料科学 钙钛矿(结构) 能量转换效率 光电子学 异质结 带隙 钙钛矿太阳能电池 载流子 电流密度 开路电压 化学工程 电压 电气工程 量子力学 物理 工程类
作者
Saad Ullah,Ping Liu,Jiaming Wang,Peixin Yang,Linlin Liu,Shi-e Yang,Haizhong Guo,Tianyu Xia,Yongsheng Chen
出处
期刊:Solar Energy [Elsevier]
卷期号:209: 79-84 被引量:54
标识
DOI:10.1016/j.solener.2020.09.003
摘要

Recently, inorganic perovskite solar cells (PSCs) based on CsPbBr3 have triggered incredible interest due to the demonstrated excellent stability against thermal and high humidity environmental conditions. However, the power conversion efficiency (PCE) of the CsPbBr3-based PSCs is still lower than that of the organic-inorganic hybrid one, because of the large band gap and serious charge recombination at the interface or inside the device. Here, the working mechanism of the devices with normal n-i-p planar structure is modeled and investigated using SCAPS 1D simulation software. The simulation results state that the proper band structure of PSCs is crucial to carrier separation and transport. The high interface recombination, originated from the large band offsets of the electron transport material (ETM)/absorber and absorber/hole transport material (HTM) respectively, can be effectively diminished with the continuous gradient junction design of the absorber, and a PCE of 11.58% is obtained with a high open-circuit voltage (VOC) of 1.68 V. Moreover, by building a heterojunction bilayer absorption scenario of CsPbIBr2/CsPbBr3 and employing ZnOS and Cu2ZnSnS4 films as the ETM and HTM respectively, the PCE of PSCs is further increased to 15.89%, caused mainly by the enhancement in short-current density (JSC). Moreover, reducing the interface defect density is also very important to improve the performance of PSCs. These results will provide theoretical guidance for improving the performance of the CsPbBr3-based PSCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
fang完成签到,获得积分10
刚刚
Orange应助俭朴的一曲采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助小马采纳,获得10
5秒前
5秒前
英俊的铭应助瀅瀅采纳,获得10
5秒前
5秒前
Jasper应助海潮飞翔采纳,获得10
6秒前
6秒前
...完成签到,获得积分10
6秒前
ZeKaWa应助堡主采纳,获得10
6秒前
Hide杰完成签到,获得积分10
7秒前
7秒前
妮妮发布了新的文献求助10
8秒前
8秒前
bob完成签到,获得积分10
9秒前
9秒前
小6发布了新的文献求助10
9秒前
orixero应助坚定剑成采纳,获得10
10秒前
10秒前
斯文败类应助muyi采纳,获得10
11秒前
PP完成签到,获得积分10
11秒前
温柔雅蕊完成签到,获得积分10
11秒前
liuf发布了新的文献求助10
11秒前
...发布了新的文献求助30
12秒前
干净寻冬应助默默善愁采纳,获得10
12秒前
cuicui发布了新的文献求助10
12秒前
13秒前
庚朝年完成签到 ,获得积分10
14秒前
15秒前
wtdai完成签到,获得积分10
16秒前
16秒前
果粒橙子发布了新的文献求助10
17秒前
chengyue9939完成签到,获得积分10
17秒前
mf发布了新的文献求助10
17秒前
听风完成签到 ,获得积分10
17秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655