Optimizing the working mechanism of the CsPbBr3-based inorganic perovskite solar cells for enhanced efficiency

材料科学 钙钛矿(结构) 能量转换效率 光电子学 异质结 带隙 钙钛矿太阳能电池 载流子 电流密度 开路电压 化学工程 电压 电气工程 量子力学 物理 工程类
作者
Saad Ullah,Ping Liu,Jiaming Wang,Peixin Yang,Linlin Liu,Shi-e Yang,Haizhong Guo,Tianyu Xia,Yongsheng Chen
出处
期刊:Solar Energy [Elsevier]
卷期号:209: 79-84 被引量:54
标识
DOI:10.1016/j.solener.2020.09.003
摘要

Recently, inorganic perovskite solar cells (PSCs) based on CsPbBr3 have triggered incredible interest due to the demonstrated excellent stability against thermal and high humidity environmental conditions. However, the power conversion efficiency (PCE) of the CsPbBr3-based PSCs is still lower than that of the organic-inorganic hybrid one, because of the large band gap and serious charge recombination at the interface or inside the device. Here, the working mechanism of the devices with normal n-i-p planar structure is modeled and investigated using SCAPS 1D simulation software. The simulation results state that the proper band structure of PSCs is crucial to carrier separation and transport. The high interface recombination, originated from the large band offsets of the electron transport material (ETM)/absorber and absorber/hole transport material (HTM) respectively, can be effectively diminished with the continuous gradient junction design of the absorber, and a PCE of 11.58% is obtained with a high open-circuit voltage (VOC) of 1.68 V. Moreover, by building a heterojunction bilayer absorption scenario of CsPbIBr2/CsPbBr3 and employing ZnOS and Cu2ZnSnS4 films as the ETM and HTM respectively, the PCE of PSCs is further increased to 15.89%, caused mainly by the enhancement in short-current density (JSC). Moreover, reducing the interface defect density is also very important to improve the performance of PSCs. These results will provide theoretical guidance for improving the performance of the CsPbBr3-based PSCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力生活的小柴完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
阿泽完成签到,获得积分10
1秒前
苦学僧发布了新的文献求助20
2秒前
3秒前
聪聪great完成签到,获得积分20
3秒前
yx发布了新的文献求助10
3秒前
随心完成签到 ,获得积分10
4秒前
4秒前
浮游应助Sere采纳,获得10
5秒前
wlnhyF发布了新的文献求助10
5秒前
4892完成签到 ,获得积分10
6秒前
6秒前
害羞的镜子完成签到,获得积分10
6秒前
顾矜应助踏实的酸奶采纳,获得10
6秒前
6秒前
千影发布了新的文献求助10
6秒前
7秒前
ARIA发布了新的文献求助10
8秒前
lilili应助猪猪hero采纳,获得10
8秒前
共享精神应助简单灵凡采纳,获得10
9秒前
9秒前
zhou发布了新的文献求助10
11秒前
酷波er应助DJ采纳,获得10
13秒前
13秒前
日暮里发布了新的文献求助10
13秒前
13秒前
13秒前
wy.he应助ShengzhangLiu采纳,获得10
13秒前
杜青发布了新的文献求助10
14秒前
szh123完成签到,获得积分10
14秒前
yeah18完成签到,获得积分10
14秒前
式微完成签到,获得积分10
15秒前
Mic应助猪猪hero采纳,获得10
16秒前
土5完成签到,获得积分20
16秒前
17秒前
万能图书馆应助千影采纳,获得10
17秒前
旅行者发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776