Optimizing the working mechanism of the CsPbBr3-based inorganic perovskite solar cells for enhanced efficiency

材料科学 钙钛矿(结构) 能量转换效率 光电子学 异质结 带隙 钙钛矿太阳能电池 载流子 电流密度 开路电压 化学工程 电压 电气工程 量子力学 物理 工程类
作者
Saad Ullah,Ping Liu,Jiaming Wang,Peixin Yang,Linlin Liu,Shi-e Yang,Haizhong Guo,Tianyu Xia,Yongsheng Chen
出处
期刊:Solar Energy [Elsevier]
卷期号:209: 79-84 被引量:54
标识
DOI:10.1016/j.solener.2020.09.003
摘要

Recently, inorganic perovskite solar cells (PSCs) based on CsPbBr3 have triggered incredible interest due to the demonstrated excellent stability against thermal and high humidity environmental conditions. However, the power conversion efficiency (PCE) of the CsPbBr3-based PSCs is still lower than that of the organic-inorganic hybrid one, because of the large band gap and serious charge recombination at the interface or inside the device. Here, the working mechanism of the devices with normal n-i-p planar structure is modeled and investigated using SCAPS 1D simulation software. The simulation results state that the proper band structure of PSCs is crucial to carrier separation and transport. The high interface recombination, originated from the large band offsets of the electron transport material (ETM)/absorber and absorber/hole transport material (HTM) respectively, can be effectively diminished with the continuous gradient junction design of the absorber, and a PCE of 11.58% is obtained with a high open-circuit voltage (VOC) of 1.68 V. Moreover, by building a heterojunction bilayer absorption scenario of CsPbIBr2/CsPbBr3 and employing ZnOS and Cu2ZnSnS4 films as the ETM and HTM respectively, the PCE of PSCs is further increased to 15.89%, caused mainly by the enhancement in short-current density (JSC). Moreover, reducing the interface defect density is also very important to improve the performance of PSCs. These results will provide theoretical guidance for improving the performance of the CsPbBr3-based PSCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨倩发布了新的文献求助20
1秒前
LikeS发布了新的文献求助10
1秒前
orixero应助复杂储采纳,获得10
1秒前
阔达宝莹发布了新的文献求助10
2秒前
陈美宏发布了新的文献求助30
2秒前
3秒前
wang完成签到,获得积分10
3秒前
tfq200完成签到,获得积分10
3秒前
背后的糖豆关注了科研通微信公众号
3秒前
4秒前
4秒前
mimimi发布了新的文献求助20
5秒前
5秒前
南巷的猫完成签到,获得积分20
6秒前
7秒前
7秒前
nine发布了新的文献求助10
7秒前
8秒前
mxy发布了新的文献求助10
8秒前
8秒前
xrd关闭了xrd文献求助
8秒前
8秒前
刘溢完成签到,获得积分20
9秒前
斯文败类应助bdJ采纳,获得10
9秒前
慕青应助pzh采纳,获得10
9秒前
科研通AI6应助Sky采纳,获得30
10秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
16秒前
青草蛋糕完成签到 ,获得积分10
17秒前
复杂储发布了新的文献求助10
17秒前
MCst发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683