Deep learning-based automated detection of retinal diseases using optical coherence tomography images

光学相干层析成像 人工智能 计算机科学 接收机工作特性 德鲁森 视网膜 医学影像学 计算机辅助诊断 模式识别(心理学) 医学 机器学习 眼科
作者
Li Feng,Hua Chen,Zheng Liu,Xue‐dian Zhang,Minshan Jiang,Zhizheng Wu,Kaiqian Zhou
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:10 (12): 6204-6204 被引量:115
标识
DOI:10.1364/boe.10.006204
摘要

Retinal disease classification is a significant problem in computer-aided diagnosis (CAD) for medical applications. This paper is focused on a 4-class classification problem to automatically detect choroidal neovascularization (CNV), diabetic macular edema (DME), DRUSEN, and NORMAL in optical coherence tomography (OCT) images. The proposed classification algorithm adopted an ensemble of four classification model instances to identify retinal OCT images, each of which was based on an improved residual neural network (ResNet50). The experiment followed a patient-level 10-fold cross-validation process, on development retinal OCT image dataset. The proposed approach achieved 0.973 (95% confidence interval [CI], 0.971-0.975) classification accuracy, 0.963 (95% CI, 0.960-0.966) sensitivity, and 0.985 (95% CI, 0.983-0.987) specificity at the B-scan level, achieving a matching or exceeding performance to that of ophthalmologists with significant clinical experience. Other performance measures used in the study were the area under receiver operating characteristic curve (AUC) and kappa value. The observations of the study implied that multi-ResNet50 ensembling was a useful technique when the availability of medical images was limited. In addition, we performed qualitative evaluation of model predictions, and occlusion testing to understand the decision-making process of our model. The paper provided an analytical discussion on misclassification and pathology regions identified by the occlusion testing also. Finally, we explored the effect of the integration of retinal OCT images and medical history data from patients on model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwj发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
2秒前
哈哈哈哈呵应助WestHoter采纳,获得10
2秒前
MOLLY完成签到,获得积分10
2秒前
Aurora完成签到,获得积分10
2秒前
丘比特应助chenchen采纳,获得10
3秒前
3秒前
SciGPT应助lanrete采纳,获得10
4秒前
缺粥发布了新的文献求助10
5秒前
MissZhang发布了新的文献求助10
5秒前
无限的板栗完成签到,获得积分10
5秒前
小马甲应助东风采纳,获得10
6秒前
Alara完成签到,获得积分10
6秒前
6秒前
zsgg发布了新的文献求助10
6秒前
6秒前
张琦发布了新的文献求助10
7秒前
三三得九完成签到 ,获得积分10
9秒前
机智的璐璐完成签到,获得积分10
10秒前
开心谷秋完成签到,获得积分10
10秒前
FashionBoy应助龙龙ff11_采纳,获得10
11秒前
肥鹏发布了新的文献求助10
11秒前
所所应助友人a采纳,获得10
11秒前
叶95发布了新的文献求助10
11秒前
田様应助程橙采纳,获得10
12秒前
wang发布了新的文献求助10
13秒前
13秒前
朴实的面包完成签到,获得积分10
13秒前
bkagyin应助刘清河采纳,获得10
17秒前
17秒前
18秒前
18秒前
珍珍完成签到,获得积分10
19秒前
19秒前
11完成签到,获得积分10
20秒前
搜集达人应助龙龙ff11_采纳,获得10
21秒前
李爱国应助放手一搏采纳,获得10
21秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3683592
求助须知:如何正确求助?哪些是违规求助? 3234859
关于积分的说明 9817453
捐赠科研通 2946517
什么是DOI,文献DOI怎么找? 1615655
邀请新用户注册赠送积分活动 763076
科研通“疑难数据库(出版商)”最低求助积分说明 737692