乳状液
蛋黄
制作
表征(材料科学)
化学工程
化学
色谱法
表(数据库)
材料科学
生物化学
纳米技术
食品科学
计算机科学
医学
数据挖掘
工程类
病理
替代医学
作者
Anheng Wang,Zhigang Xiao,Jingjing Wang,Guijie Li,Lijuan Wang
摘要
Abstract Background The egg yolk is complex, which makes it difficult to understand why mayonnaise can be stabilized into a high internal‐phase emulsion. This study aimed to assess the possibility of developing oil‐in‐water emulsions through unmodified natural egg‐yolk granules (EYGs) at various pH levels, to further understand the precise mechanism of mayonnaise. Results Egg‐yolk granules were obtained from hen egg yolk by centrifugation. The sizes of the EYGs were characterized using dynamic light scattering (DLS). Zeta potential of EYGs was detected by DLS and its microstructure was observed by microscope and scanning electron microscope (SEM). Oil / water emulsions were made with EYGs and the size distribution and creaming index of those emulsions were measured at different storage times (1 h and 14 days). The interfacial morphology of EYGs was observed using the emulsion polymerization method. Our results suggested that the prepared EYGs were mainly in an aggregated state but individual EYGs displayed spherical shapes, with a size of 1.0 ± 0.2 μm. The emulsion stabilized by EYGs displayed better stability against creaming at acidic pH (<4.0). At the same time, the interfacial morphology and microscopic observation of the emulsions strongly demonstrated that the emulsions were of the Pickering type. Conclusion The above results are of great importance for an understanding of the mechanism by which mayonnaise is stabilized by egg, together with the applications of egg in food formulations. © 2019 Society of Chemical Industry
科研通智能强力驱动
Strongly Powered by AbleSci AI