Development of Machine Learning Models for Predicting Postoperative Delayed Remission in Patients With Cushing’s Disease

机器学习 人工智能 医学 背景(考古学) 分级(工程) 阿达布思 特征选择 计算机科学 支持向量机 古生物学 土木工程 工程类 生物
作者
Yanghua Fan,Yichao Li,Xinjie Bao,Huijuan Zhu,Lin Lü,Yong Yao,Yansheng Li,Mingliang Su,Feng Feng,Shanshan Feng,Ming Feng,Renzhi Wang
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
卷期号:106 (1): e217-e231 被引量:28
标识
DOI:10.1210/clinem/dgaa698
摘要

Abstract Context Postoperative hypercortisolemia mandates further therapy in patients with Cushing’s disease (CD). Delayed remission (DR) is defined as not achieving postoperative immediate remission (IR), but having spontaneous remission during long-term follow-up. Objective We aimed to develop and validate machine learning (ML) models for predicting DR in non-IR patients with CD. Methods We enrolled 201 CD patients, and randomly divided them into training and test datasets. We then used the recursive feature elimination (RFE) algorithm to select features and applied 5 ML algorithms to construct DR prediction models. We used permutation importance and local interpretable model–agnostic explanation (LIME) algorithms to determine the importance of the selected features and interpret the ML models. Results Eighty-eight (43.8%) of the 201 CD patients met the criteria for DR. Overall, patients who were younger, had a low body mass index, a Knosp grade of III–IV, and a tumor not found by pathological examination tended to achieve a lower rate of DR. After RFE feature selection, the Adaboost model, which comprised 18 features, had the greatest discriminatory ability, and its predictive ability was significantly better than using Knosp grading and postoperative immediate morning serum cortisol (PoC). The results obtained from permutation importance and LIME algorithms showed that preoperative 24-hour urine free cortisol, PoC, and age were the most important features, and showed the reliability and clinical practicability of the Adaboost model in DC prediction. Conclusions Machine learning–based models could serve as an effective noninvasive approach to predicting DR, and could aid in determining individual treatment and follow-up strategies for CD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解文哲完成签到,获得积分10
刚刚
缓慢黑米发布了新的文献求助10
刚刚
余欣发布了新的文献求助10
刚刚
刘志怡发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
dream完成签到,获得积分10
4秒前
鲤鱼野狼完成签到,获得积分10
4秒前
WZ完成签到,获得积分10
5秒前
5秒前
ZG发布了新的文献求助10
5秒前
隐形曼青应助独特翠芙采纳,获得10
5秒前
难过的溪流关注了科研通微信公众号
5秒前
难过的尔丝完成签到,获得积分10
5秒前
6秒前
8秒前
小宝完成签到,获得积分10
8秒前
8秒前
10秒前
浮游应助咖啡蓝图采纳,获得10
12秒前
12秒前
zhangxinan发布了新的文献求助10
12秒前
NinaLu发布了新的文献求助10
13秒前
yp完成签到,获得积分10
13秒前
淡淡山兰完成签到,获得积分10
15秒前
木兮完成签到 ,获得积分10
15秒前
虚幻蹇完成签到,获得积分10
15秒前
15秒前
大壮完成签到,获得积分10
16秒前
kaikai完成签到,获得积分10
16秒前
英姑应助meteor采纳,获得10
17秒前
冰山完成签到,获得积分10
17秒前
大个应助闪闪的斑马采纳,获得10
17秒前
lastmandream应助刘志怡采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
牛乃唐完成签到,获得积分10
19秒前
酷波er应助老干部采纳,获得10
20秒前
充电宝应助yukiycc采纳,获得30
20秒前
20秒前
刘雪松完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096924
求助须知:如何正确求助?哪些是违规求助? 4309483
关于积分的说明 13427440
捐赠科研通 4136867
什么是DOI,文献DOI怎么找? 2266371
邀请新用户注册赠送积分活动 1269477
关于科研通互助平台的介绍 1205768