粒子(生态学)
粘弹性
胶体
化学物理
吸附
扩散
纳米技术
干扰
物理
材料科学
化学工程
复合材料
热力学
化学
物理化学
地质学
工程类
海洋学
作者
Xiaoliang Ji,Xiaolu Wang,Yongjian Zhang,Duyang Zang
标识
DOI:10.1088/1361-6633/abbcd8
摘要
Colloidal particles can be adsorbed at fluid-fluid interfaces, a phenomenon frequently observed in particle-stabilized foams, Pickering emulsions, and bijels. Particles adsorbed at interfaces exhibit unique physical and chemical behaviors, which affect the mechanical properties of the interface. Therefore, interfacial colloidal particles are of interest in terms of both fundamental and applied research. In this paper, we review studies on the adsorption of colloidal particles at fluid-fluid interfaces, from both thermodynamic and mechanical points of view, and discuss the differences as compared with surfactants and polymers. The unique particle interactions induced by the interfaces as well as the particle dynamics including lateral diffusion and contact line relaxation will be presented. We focus on the rearrangement of the particles and the resultant interfacial viscoelasticity. Particular emphasis will be given to the effects of particle shape, size, and surface hydrophobicity on the interfacial particle assembly and the mechanical properties of the obtained particle layer. We will also summarize recent advances in interfacial jamming behavior caused by adsorption of particles at interfaces. The buckling and cracking behavior of particle layers will be discussed from a mechanical perspective. Finally, we suggest several potential directions for future research in this area.
科研通智能强力驱动
Strongly Powered by AbleSci AI