β氧化
脂肪酸
过氧化物酶体
内科学
内分泌学
脂质代谢
脂肪细胞蛋白2
骨骼肌
生物化学
医学
新陈代谢
脂质氧化
生物
脂肪酸代谢
化学
受体
抗氧化剂
作者
Andreas M. Fritzen,Anne‐Marie Lundsgaard,Bente Kiens
标识
DOI:10.1038/s41574-020-0405-1
摘要
Both the consumption of a diet rich in fatty acids and exercise training result in similar adaptations in several skeletal muscle proteins. These adaptations are involved in fatty acid uptake and activation within the myocyte, the mitochondrial import of fatty acids and further metabolism of fatty acids by β-oxidation. Fatty acid availability is repeatedly increased postprandially during the day, particularly during high dietary fat intake and also increases during, and after, aerobic exercise. As such, fatty acids are possible signalling candidates that regulate transcription of target genes encoding proteins involved in muscle lipid metabolism. The mechanism of signalling might be direct or indirect targeting of peroxisome proliferator-activated receptors by fatty acid ligands, by fatty acid-induced NAD+-stimulated activation of sirtuin 1 and/or fatty acid-mediated activation of AMP-activated protein kinase. Lactate might also have a role in lipid metabolic adaptations. Obesity is characterized by impairments in fatty acid oxidation capacity, and individuals with obesity show some rigidity in increasing fatty acid oxidation in response to high fat intake. However, individuals with obesity retain improvements in fatty acid oxidation capacity in response to exercise training, thereby highlighting exercise training as a potential method to improve lipid metabolic flexibility in obesity.
科研通智能强力驱动
Strongly Powered by AbleSci AI