A Fuzzy Deep Neural Network with Sparse Autoencoder for Emotional Intention Understanding in Human-Robot Interaction

自编码 人工智能 计算机科学 人机交互 人工神经网络 模糊逻辑 机器学习 模式识别(心理学) 机器人
作者
Luefeng Chen,Wanjuan Su,Min Wu,Witold Pedrycz,Kaoru Hirota
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:48
标识
DOI:10.1109/tfuzz.2020.2966167
摘要

A fuzzy deep neural network with sparse autoencoder (FDNNSA) is proposed for intention understanding based on human emotions and identification information (i.e., age, gender, and region), in which the fuzzy C-means (FCM) is used to cluster the input data, and deep neural network with sparse autoencoder (DNNSA) is designed for emotional intention understanding in human-robot interaction. It aims to make robots capable of recognizing human emotions and understanding related emotional intention, the FCM is suitable for gathering similar information so that the calculations of dimensionality of DNNSA will be reduced, and the sparse autoencoder of DNNSA can make the neuron of DNNSA sparse to reduce the complexity of the network in such a way human-robot interaction is running smoothly. To validate the proposal, simulation experiments based on benchmark databases such as facial expression database of CK+, and speech emotion corpus of CASIA were completed. The experimental results show that the proposal outperforms the baseline algorithms of Softmax regression (SR), DNNSA, FCM-based SR (FSR), Softplus, Gath Geva-based DNNSA (GDNNSA), and ensemble DNNSA (EDNNSA). Preliminary application experiments are performed in the development of emotional social robot system, where volunteers experience the scenario of "drinking at the bar". The obtained results indicate that the proposed FDNNSA can promote robot understanding of emotional intention of human.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CodeCraft应助GYPP采纳,获得10
3秒前
4秒前
4秒前
激动的南烟完成签到,获得积分10
5秒前
zt完成签到,获得积分10
5秒前
你的样子发布了新的文献求助10
5秒前
daiwanting完成签到,获得积分10
6秒前
1234发布了新的文献求助10
6秒前
怕黑半仙应助古桜采纳,获得10
6秒前
猪猪侠发布了新的文献求助10
7秒前
不吃海苔应助ju龙哥采纳,获得10
8秒前
hkf完成签到 ,获得积分10
8秒前
8秒前
BSDL发布了新的文献求助10
9秒前
打打应助小僧采纳,获得10
9秒前
852应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
zh应助科研通管家采纳,获得50
10秒前
大模型应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
11秒前
清秀寇发布了新的文献求助10
13秒前
14秒前
14秒前
雨前知了完成签到,获得积分10
14秒前
CipherSage应助忘课文采纳,获得10
14秒前
阔达可乐发布了新的文献求助80
14秒前
14秒前
太阳发布了新的文献求助10
15秒前
16秒前
Loooong应助1234采纳,获得10
16秒前
哈哈爷完成签到 ,获得积分10
16秒前
坤坤完成签到,获得积分10
16秒前
16秒前
舒心白安应助BSDL采纳,获得10
17秒前
时鹏飞发布了新的文献求助10
17秒前
科研通AI2S应助BSDL采纳,获得10
17秒前
科研通AI2S应助BSDL采纳,获得10
17秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383656
求助须知:如何正确求助?哪些是违规求助? 2997848
关于积分的说明 8776717
捐赠科研通 2683417
什么是DOI,文献DOI怎么找? 1469660
科研通“疑难数据库(出版商)”最低求助积分说明 679488
邀请新用户注册赠送积分活动 671775