Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry

人工智能 分割 假阳性悖论 计算机科学 计算机视觉 点云 摄影测量学 目标检测 人工神经网络 图像分割 运动检测 模式识别(心理学) 运动(物理)
作者
Jordi Gené-Mola,Ricardo Sanz,Joan R. Rosell-Polo,Josep Ramon Morros,Javier Ruiz‐Hidalgo,Verónica Vilaplana,Eduard Gregorio
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:169: 105165-105165 被引量:120
标识
DOI:10.1016/j.compag.2019.105165
摘要

The development of remote fruit detection systems able to identify and 3D locate fruits provides opportunities to improve the efficiency of agriculture management. Most of the current fruit detection systems are based on 2D image analysis. Although the use of 3D sensors is emerging, precise 3D fruit location is still a pending issue. This work presents a new methodology for fruit detection and 3D location consisting of: (1) 2D fruit detection and segmentation using Mask R-CNN instance segmentation neural network; (2) 3D point cloud generation of detected apples using structure-from-motion (SfM) photogrammetry; (3) projection of 2D image detections onto 3D space; (4) false positives removal using a trained support vector machine. This methodology was tested on 11 Fuji apple trees containing a total of 1455 apples. Results showed that, by combining instance segmentation with SfM the system performance increased from an F1-score of 0.816 (2D fruit detection) to 0.881 (3D fruit detection and location) with respect to the total amount of fruits. The main advantages of this methodology are the reduced number of false positives and the higher detection rate, while the main disadvantage is the high processing time required for SfM, which makes it presently unsuitable for real-time work. From these results, it can be concluded that the combination of instance segmentation and SfM provides high performance fruit detection with high 3D data precision. The dataset has been made publicly available and an interactive visualization of fruit detection results is accessible at http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真的无声完成签到,获得积分20
2秒前
Blue完成签到,获得积分10
3秒前
4秒前
大饼子完成签到 ,获得积分10
5秒前
桐桐应助穆一手采纳,获得10
5秒前
快乐大炮发布了新的文献求助10
7秒前
Kyogoku完成签到,获得积分10
7秒前
打打应助zhuzhuxia采纳,获得30
10秒前
学生发布了新的文献求助10
11秒前
ZLX完成签到,获得积分10
11秒前
Eri_SCI完成签到 ,获得积分10
12秒前
13秒前
14秒前
上官若男应助热情千风采纳,获得10
15秒前
科研通AI2S应助快乐大炮采纳,获得10
16秒前
JamesPei应助地道的反差萌采纳,获得30
17秒前
17秒前
咖啡续命完成签到 ,获得积分10
17秒前
18秒前
18秒前
丘比特应助碧蓝小蜜蜂采纳,获得10
21秒前
穆一手发布了新的文献求助10
21秒前
季夏完成签到,获得积分10
21秒前
22秒前
赘婿应助做事不太冷静采纳,获得10
23秒前
25秒前
27秒前
shitou完成签到,获得积分10
28秒前
CY发布了新的文献求助10
29秒前
29秒前
LC给LC的求助进行了留言
31秒前
32秒前
33秒前
33秒前
研友_VZG7GZ应助coolkid采纳,获得10
34秒前
Jian完成签到,获得积分10
34秒前
科研通AI2S应助CY采纳,获得10
34秒前
辰星发布了新的文献求助10
35秒前
37秒前
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141258
求助须知:如何正确求助?哪些是违规求助? 2792257
关于积分的说明 7801943
捐赠科研通 2448459
什么是DOI,文献DOI怎么找? 1302536
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237