Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry

人工智能 分割 假阳性悖论 计算机科学 计算机视觉 点云 摄影测量学 目标检测 人工神经网络 图像分割 运动检测 模式识别(心理学) 运动(物理)
作者
Jordi Gené-Mola,Ricardo Sanz,Joan R. Rosell-Polo,Josep Ramon Morros,Javier Ruiz‐Hidalgo,Verónica Vilaplana,Eduard Gregorio
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:169: 105165-105165 被引量:120
标识
DOI:10.1016/j.compag.2019.105165
摘要

The development of remote fruit detection systems able to identify and 3D locate fruits provides opportunities to improve the efficiency of agriculture management. Most of the current fruit detection systems are based on 2D image analysis. Although the use of 3D sensors is emerging, precise 3D fruit location is still a pending issue. This work presents a new methodology for fruit detection and 3D location consisting of: (1) 2D fruit detection and segmentation using Mask R-CNN instance segmentation neural network; (2) 3D point cloud generation of detected apples using structure-from-motion (SfM) photogrammetry; (3) projection of 2D image detections onto 3D space; (4) false positives removal using a trained support vector machine. This methodology was tested on 11 Fuji apple trees containing a total of 1455 apples. Results showed that, by combining instance segmentation with SfM the system performance increased from an F1-score of 0.816 (2D fruit detection) to 0.881 (3D fruit detection and location) with respect to the total amount of fruits. The main advantages of this methodology are the reduced number of false positives and the higher detection rate, while the main disadvantage is the high processing time required for SfM, which makes it presently unsuitable for real-time work. From these results, it can be concluded that the combination of instance segmentation and SfM provides high performance fruit detection with high 3D data precision. The dataset has been made publicly available and an interactive visualization of fruit detection results is accessible at http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的语柔完成签到,获得积分10
刚刚
XXF完成签到,获得积分10
1秒前
英勇幻翠完成签到,获得积分20
4秒前
现代的天宇完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Jasper应助杨小鸿采纳,获得10
6秒前
7秒前
栗子完成签到,获得积分10
8秒前
丶Dawn完成签到,获得积分10
9秒前
sxtk完成签到,获得积分20
11秒前
jenna完成签到,获得积分10
12秒前
holy发布了新的文献求助10
12秒前
蔷薇早雨关注了科研通微信公众号
13秒前
summerymiao完成签到,获得积分10
15秒前
16秒前
华仔应助鲤鱼采纳,获得10
18秒前
18秒前
wuta完成签到,获得积分10
19秒前
凯王爷完成签到,获得积分10
19秒前
李善聪发布了新的文献求助20
19秒前
19秒前
holy完成签到,获得积分10
23秒前
summerymiao发布了新的文献求助100
24秒前
24秒前
小野猪发布了新的文献求助10
24秒前
丶Dawn发布了新的文献求助20
25秒前
徐1完成签到 ,获得积分10
25秒前
pangminmin完成签到,获得积分10
26秒前
三更笔舞发布了新的文献求助30
28秒前
28秒前
29秒前
谢小盟应助2滴水采纳,获得10
30秒前
量子星尘发布了新的文献求助10
30秒前
杨小鸿发布了新的文献求助10
33秒前
33秒前
英姑应助娜娜采纳,获得10
33秒前
天真的冥王星完成签到,获得积分10
34秒前
高大的千秋完成签到,获得积分10
35秒前
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044