亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lithium-Sulfur Batteries with a Vertical Co9S8 Hollow Nanowall Arrays-Modified Celgard Separator

多硫化物 分离器(采油) 法拉第效率 材料科学 储能 溶解 化学工程 阴极 离子 纳米技术 电极 化学 电气工程 电解质 工程类 有机化学 功率(物理) 物理 热力学 物理化学 量子力学
作者
Jiarui He,Arumugam Manthiram
出处
期刊:Meeting abstracts
标识
DOI:10.1149/ma2019-01/2/127
摘要

Advanced energy-storage technologies are urgently needed to satisfy the energy demands of the society. Sulfur is an appealing candidate for high energy-density batteries, owing to its high theoretical capacity (1,675 mA h g-1), natural abundance, and low cost.1-3 However, the rapid capacity degradation, low Coulombic efficiency, and short cycle life originating from polysulfide dissolution and migration remain challenging for the practical application of lithium-sulfur (Li-S) batteries.4, 5Our previous reports have demonstrated that configuring interlayers between the separator and the sulfur cathode is an effective and convenient strategy to alleviate the shuttle effect.6 However, most of those interlayers are fabricated by vacuum-filtration method, which makes those polar materials easily stack together and thus form a very thick interlayer. Therefore, on the one hand, the transport of lithium ions will be limited by the thick polar interlayers, which is not desirable for fast insertion/de-insertion of Li ions and high rate capacity. On the other hand, the stacked thick interlayers, as an inactive material, will decrease the overall cell energy density. To address such issues, we present here a novel Co9S8 nanowall array with vertical hollow naoarchitecture as an efficient barrier for lithium polysulfides (LiPS) in Li-S batteries.7 We present well-aligned, hollow Co9S8 arrays in-situ grown on a Celgard (Co9S8-Celgard) separator as an efficient polysulfide barrier for high-performance Li-S cells without any significant increase in the weight and volume (Fig. 1a). This novel concept/strategy of designing a multifunctional separator via in-situ grown polar and conductive materials (Co9S8 hollow arrays) on a commercial separator dramatically suppresses the shuttle effect of LiPSs and significantly improves the electrochemical performance of Li-S cells. Due to its well-designed structure, in-situ growth/transformation, and the polarity and high conductivity of Co9S8, the Li-S cell with the Co9S8-Celgard separator not only effectively blocks the LiPSs even with pure sulfur cathodes with a high sulfur loading (5.6 mg cm-2), but also delivers excellent specific capacity, outstanding rate capability, and remarkable cycling stability for an impressive number of 1,000 cycles (Fig. 1b - d). In essence, the novel design and in-situ growth of MOF-derived multifunctional Co9S8 layers are crucial to suppress the severe polysulfide diffusion and alleviate the shuttle effect of LiPSs. We believe that this approach would promote greatly the development of modified separators, particularly the design and synthesis of multifunctional separators. Fig. 1 (a) Schematic illustration of the synthesis process of Co9S8-Celgard. (b) Rate performances at various cycling rates with the Celgard, MOF-Celgard, and Co9S8-Celgard separators. (c) Cycling performances of Li-S cells with high sulfur-loading cathodes with Co9S8-Celgard separators. (d) Long-term cycling performances of the Li-S cells with the Co9S8-Celgard separators at 1C rate for 1,000 cycles. REFERENCES1 J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 2016, 10, 10981. 2 J. He, L. Luo, Y. Chen, A. Manthiram, Adv. Mater. 2017, 29, 1702707. 3 F. Wu, J. T. Lee, N. Nitta, H. Kim, O. Borodin, G. Yushin, Adv. Mater. 2015, 27, 101. 4 G. Zhou, S. Pei, L. Li, D. Wang, S. Wang, K. Huang, L. Yin, F. Li, H. Cheng, Adv. Mater. 2014, 26, 625. 5 J. He, Y. Chen, P. Li, F. Fu, Z. Wang, W. Zhang, J. Mater. Chem. A 2015, 3, 18605. 6 Y. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166. 7 J. He, Y. Chen, A. Manthiram, Energ. Environ. Sci. 2018, 11, 2560. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
小宇完成签到,获得积分10
9秒前
坚强紫山发布了新的文献求助10
15秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
38秒前
Akim应助ceeray23采纳,获得20
44秒前
完美世界应助ceeray23采纳,获得20
47秒前
48秒前
精明浩然应助ceeray23采纳,获得20
49秒前
甜蜜乐松发布了新的文献求助10
52秒前
关关过应助ceeray23采纳,获得20
52秒前
Criminology34举报Se1fer求助涉嫌违规
52秒前
Criminology34应助ceeray23采纳,获得20
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
十二倍根号二完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
jason完成签到,获得积分0
1分钟前
1分钟前
庄二豆完成签到,获得积分10
2分钟前
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得20
2分钟前
2分钟前
英姑应助ceeray23采纳,获得20
2分钟前
Zx_1993应助ceeray23采纳,获得20
2分钟前
万能图书馆应助keke采纳,获得10
2分钟前
老福贵儿应助ceeray23采纳,获得20
2分钟前
搜集达人应助ceeray23采纳,获得20
2分钟前
英俊的铭应助ceeray23采纳,获得20
2分钟前
2分钟前
keke发布了新的文献求助10
2分钟前
moonlight完成签到,获得积分10
3分钟前
无聊的怀绿完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691039
关于积分的说明 14866783
捐赠科研通 4707670
什么是DOI,文献DOI怎么找? 2542899
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276