已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lithium-Sulfur Batteries with a Vertical Co9S8 Hollow Nanowall Arrays-Modified Celgard Separator

多硫化物 分离器(采油) 法拉第效率 材料科学 储能 溶解 化学工程 阴极 离子 纳米技术 电极 化学 电气工程 电解质 工程类 有机化学 功率(物理) 物理 热力学 物理化学 量子力学
作者
Jiarui He,Arumugam Manthiram
出处
期刊:Meeting abstracts
标识
DOI:10.1149/ma2019-01/2/127
摘要

Advanced energy-storage technologies are urgently needed to satisfy the energy demands of the society. Sulfur is an appealing candidate for high energy-density batteries, owing to its high theoretical capacity (1,675 mA h g-1), natural abundance, and low cost.1-3 However, the rapid capacity degradation, low Coulombic efficiency, and short cycle life originating from polysulfide dissolution and migration remain challenging for the practical application of lithium-sulfur (Li-S) batteries.4, 5Our previous reports have demonstrated that configuring interlayers between the separator and the sulfur cathode is an effective and convenient strategy to alleviate the shuttle effect.6 However, most of those interlayers are fabricated by vacuum-filtration method, which makes those polar materials easily stack together and thus form a very thick interlayer. Therefore, on the one hand, the transport of lithium ions will be limited by the thick polar interlayers, which is not desirable for fast insertion/de-insertion of Li ions and high rate capacity. On the other hand, the stacked thick interlayers, as an inactive material, will decrease the overall cell energy density. To address such issues, we present here a novel Co9S8 nanowall array with vertical hollow naoarchitecture as an efficient barrier for lithium polysulfides (LiPS) in Li-S batteries.7 We present well-aligned, hollow Co9S8 arrays in-situ grown on a Celgard (Co9S8-Celgard) separator as an efficient polysulfide barrier for high-performance Li-S cells without any significant increase in the weight and volume (Fig. 1a). This novel concept/strategy of designing a multifunctional separator via in-situ grown polar and conductive materials (Co9S8 hollow arrays) on a commercial separator dramatically suppresses the shuttle effect of LiPSs and significantly improves the electrochemical performance of Li-S cells. Due to its well-designed structure, in-situ growth/transformation, and the polarity and high conductivity of Co9S8, the Li-S cell with the Co9S8-Celgard separator not only effectively blocks the LiPSs even with pure sulfur cathodes with a high sulfur loading (5.6 mg cm-2), but also delivers excellent specific capacity, outstanding rate capability, and remarkable cycling stability for an impressive number of 1,000 cycles (Fig. 1b - d). In essence, the novel design and in-situ growth of MOF-derived multifunctional Co9S8 layers are crucial to suppress the severe polysulfide diffusion and alleviate the shuttle effect of LiPSs. We believe that this approach would promote greatly the development of modified separators, particularly the design and synthesis of multifunctional separators. Fig. 1 (a) Schematic illustration of the synthesis process of Co9S8-Celgard. (b) Rate performances at various cycling rates with the Celgard, MOF-Celgard, and Co9S8-Celgard separators. (c) Cycling performances of Li-S cells with high sulfur-loading cathodes with Co9S8-Celgard separators. (d) Long-term cycling performances of the Li-S cells with the Co9S8-Celgard separators at 1C rate for 1,000 cycles. REFERENCES1 J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 2016, 10, 10981. 2 J. He, L. Luo, Y. Chen, A. Manthiram, Adv. Mater. 2017, 29, 1702707. 3 F. Wu, J. T. Lee, N. Nitta, H. Kim, O. Borodin, G. Yushin, Adv. Mater. 2015, 27, 101. 4 G. Zhou, S. Pei, L. Li, D. Wang, S. Wang, K. Huang, L. Yin, F. Li, H. Cheng, Adv. Mater. 2014, 26, 625. 5 J. He, Y. Chen, P. Li, F. Fu, Z. Wang, W. Zhang, J. Mater. Chem. A 2015, 3, 18605. 6 Y. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166. 7 J. He, Y. Chen, A. Manthiram, Energ. Environ. Sci. 2018, 11, 2560. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来学习完成签到,获得积分10
1秒前
2秒前
慕青应助kk采纳,获得10
4秒前
CYL07完成签到 ,获得积分10
6秒前
科研通AI6应助U87采纳,获得30
9秒前
短巷完成签到 ,获得积分10
14秒前
牛哥发布了新的文献求助10
16秒前
17秒前
20秒前
猜不猜不完成签到 ,获得积分10
20秒前
菜芽君完成签到,获得积分10
20秒前
杜飞发布了新的文献求助10
20秒前
文静的可仁完成签到,获得积分10
21秒前
fff完成签到 ,获得积分10
21秒前
我吃小饼干完成签到 ,获得积分10
23秒前
25秒前
grace完成签到 ,获得积分10
25秒前
zcm1999完成签到,获得积分10
25秒前
hauru完成签到,获得积分10
29秒前
李爱国应助香菜包采纳,获得10
29秒前
momo完成签到,获得积分10
35秒前
THEO完成签到,获得积分10
35秒前
Unlisted完成签到,获得积分10
37秒前
Cope完成签到 ,获得积分10
38秒前
38秒前
小白完成签到,获得积分10
39秒前
魔幻以菱完成签到 ,获得积分10
40秒前
xxx发布了新的文献求助10
43秒前
蛙蛙应助U87采纳,获得30
43秒前
加菲丰丰完成签到,获得积分0
44秒前
曾予嘉完成签到 ,获得积分10
47秒前
揽月完成签到,获得积分10
50秒前
小袁冲冲冲完成签到,获得积分10
51秒前
小二郎应助陶醉紫菜采纳,获得10
51秒前
gura完成签到 ,获得积分10
52秒前
21完成签到 ,获得积分10
53秒前
53秒前
桐桐应助曾予嘉采纳,获得10
54秒前
xiaohan,JIA完成签到,获得积分10
57秒前
充电宝应助杜飞采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655