Lithium-Sulfur Batteries with a Vertical Co9S8 Hollow Nanowall Arrays-Modified Celgard Separator

多硫化物 分离器(采油) 法拉第效率 材料科学 储能 溶解 化学工程 阴极 离子 纳米技术 电极 化学 电气工程 电解质 工程类 有机化学 功率(物理) 物理 热力学 物理化学 量子力学
作者
Jiarui He,Arumugam Manthiram
出处
期刊:Meeting abstracts
标识
DOI:10.1149/ma2019-01/2/127
摘要

Advanced energy-storage technologies are urgently needed to satisfy the energy demands of the society. Sulfur is an appealing candidate for high energy-density batteries, owing to its high theoretical capacity (1,675 mA h g-1), natural abundance, and low cost.1-3 However, the rapid capacity degradation, low Coulombic efficiency, and short cycle life originating from polysulfide dissolution and migration remain challenging for the practical application of lithium-sulfur (Li-S) batteries.4, 5Our previous reports have demonstrated that configuring interlayers between the separator and the sulfur cathode is an effective and convenient strategy to alleviate the shuttle effect.6 However, most of those interlayers are fabricated by vacuum-filtration method, which makes those polar materials easily stack together and thus form a very thick interlayer. Therefore, on the one hand, the transport of lithium ions will be limited by the thick polar interlayers, which is not desirable for fast insertion/de-insertion of Li ions and high rate capacity. On the other hand, the stacked thick interlayers, as an inactive material, will decrease the overall cell energy density. To address such issues, we present here a novel Co9S8 nanowall array with vertical hollow naoarchitecture as an efficient barrier for lithium polysulfides (LiPS) in Li-S batteries.7 We present well-aligned, hollow Co9S8 arrays in-situ grown on a Celgard (Co9S8-Celgard) separator as an efficient polysulfide barrier for high-performance Li-S cells without any significant increase in the weight and volume (Fig. 1a). This novel concept/strategy of designing a multifunctional separator via in-situ grown polar and conductive materials (Co9S8 hollow arrays) on a commercial separator dramatically suppresses the shuttle effect of LiPSs and significantly improves the electrochemical performance of Li-S cells. Due to its well-designed structure, in-situ growth/transformation, and the polarity and high conductivity of Co9S8, the Li-S cell with the Co9S8-Celgard separator not only effectively blocks the LiPSs even with pure sulfur cathodes with a high sulfur loading (5.6 mg cm-2), but also delivers excellent specific capacity, outstanding rate capability, and remarkable cycling stability for an impressive number of 1,000 cycles (Fig. 1b - d). In essence, the novel design and in-situ growth of MOF-derived multifunctional Co9S8 layers are crucial to suppress the severe polysulfide diffusion and alleviate the shuttle effect of LiPSs. We believe that this approach would promote greatly the development of modified separators, particularly the design and synthesis of multifunctional separators. Fig. 1 (a) Schematic illustration of the synthesis process of Co9S8-Celgard. (b) Rate performances at various cycling rates with the Celgard, MOF-Celgard, and Co9S8-Celgard separators. (c) Cycling performances of Li-S cells with high sulfur-loading cathodes with Co9S8-Celgard separators. (d) Long-term cycling performances of the Li-S cells with the Co9S8-Celgard separators at 1C rate for 1,000 cycles. REFERENCES1 J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 2016, 10, 10981. 2 J. He, L. Luo, Y. Chen, A. Manthiram, Adv. Mater. 2017, 29, 1702707. 3 F. Wu, J. T. Lee, N. Nitta, H. Kim, O. Borodin, G. Yushin, Adv. Mater. 2015, 27, 101. 4 G. Zhou, S. Pei, L. Li, D. Wang, S. Wang, K. Huang, L. Yin, F. Li, H. Cheng, Adv. Mater. 2014, 26, 625. 5 J. He, Y. Chen, P. Li, F. Fu, Z. Wang, W. Zhang, J. Mater. Chem. A 2015, 3, 18605. 6 Y. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166. 7 J. He, Y. Chen, A. Manthiram, Energ. Environ. Sci. 2018, 11, 2560. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醍醐不醒完成签到,获得积分10
1秒前
悦耳一江发布了新的文献求助10
1秒前
酷酷初之发布了新的文献求助200
1秒前
雪糕发布了新的文献求助10
2秒前
lyp完成签到 ,获得积分10
4秒前
龙卷风摧毁停车场完成签到,获得积分10
4秒前
刚子发布了新的文献求助10
4秒前
__发布了新的文献求助10
5秒前
SAN关闭了SAN文献求助
5秒前
DRYAN发布了新的文献求助10
5秒前
AAA发布了新的文献求助10
6秒前
6秒前
6秒前
季宇发布了新的文献求助10
7秒前
醍醐不醒发布了新的文献求助10
7秒前
lk、发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
听筠发布了新的文献求助10
9秒前
乐白发布了新的文献求助10
10秒前
fr0zen完成签到,获得积分10
10秒前
活泼元瑶发布了新的文献求助10
11秒前
周涛发布了新的文献求助30
12秒前
12秒前
Akim应助lk、采纳,获得10
13秒前
13秒前
收拾完完成签到 ,获得积分10
14秒前
领导范儿应助贰陆采纳,获得10
15秒前
小马甲应助momo采纳,获得10
15秒前
hahaha完成签到,获得积分10
16秒前
悦耳一江完成签到,获得积分10
17秒前
pei发布了新的文献求助10
18秒前
互助遵法尚德应助即兴采纳,获得10
18秒前
穆行恶发布了新的文献求助10
19秒前
orixero应助闪闪放光彩采纳,获得10
20秒前
一苇莆完成签到,获得积分10
20秒前
20秒前
加菲丰丰应助柔弱的秋珊采纳,获得20
21秒前
熊本熊完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706