Lithium-Sulfur Batteries with a Vertical Co9S8 Hollow Nanowall Arrays-Modified Celgard Separator

多硫化物 分离器(采油) 法拉第效率 材料科学 储能 溶解 化学工程 阴极 离子 纳米技术 电极 化学 电气工程 电解质 工程类 有机化学 功率(物理) 物理 热力学 物理化学 量子力学
作者
Jiarui He,Arumugam Manthiram
出处
期刊:Meeting abstracts
标识
DOI:10.1149/ma2019-01/2/127
摘要

Advanced energy-storage technologies are urgently needed to satisfy the energy demands of the society. Sulfur is an appealing candidate for high energy-density batteries, owing to its high theoretical capacity (1,675 mA h g-1), natural abundance, and low cost.1-3 However, the rapid capacity degradation, low Coulombic efficiency, and short cycle life originating from polysulfide dissolution and migration remain challenging for the practical application of lithium-sulfur (Li-S) batteries.4, 5Our previous reports have demonstrated that configuring interlayers between the separator and the sulfur cathode is an effective and convenient strategy to alleviate the shuttle effect.6 However, most of those interlayers are fabricated by vacuum-filtration method, which makes those polar materials easily stack together and thus form a very thick interlayer. Therefore, on the one hand, the transport of lithium ions will be limited by the thick polar interlayers, which is not desirable for fast insertion/de-insertion of Li ions and high rate capacity. On the other hand, the stacked thick interlayers, as an inactive material, will decrease the overall cell energy density. To address such issues, we present here a novel Co9S8 nanowall array with vertical hollow naoarchitecture as an efficient barrier for lithium polysulfides (LiPS) in Li-S batteries.7 We present well-aligned, hollow Co9S8 arrays in-situ grown on a Celgard (Co9S8-Celgard) separator as an efficient polysulfide barrier for high-performance Li-S cells without any significant increase in the weight and volume (Fig. 1a). This novel concept/strategy of designing a multifunctional separator via in-situ grown polar and conductive materials (Co9S8 hollow arrays) on a commercial separator dramatically suppresses the shuttle effect of LiPSs and significantly improves the electrochemical performance of Li-S cells. Due to its well-designed structure, in-situ growth/transformation, and the polarity and high conductivity of Co9S8, the Li-S cell with the Co9S8-Celgard separator not only effectively blocks the LiPSs even with pure sulfur cathodes with a high sulfur loading (5.6 mg cm-2), but also delivers excellent specific capacity, outstanding rate capability, and remarkable cycling stability for an impressive number of 1,000 cycles (Fig. 1b - d). In essence, the novel design and in-situ growth of MOF-derived multifunctional Co9S8 layers are crucial to suppress the severe polysulfide diffusion and alleviate the shuttle effect of LiPSs. We believe that this approach would promote greatly the development of modified separators, particularly the design and synthesis of multifunctional separators. Fig. 1 (a) Schematic illustration of the synthesis process of Co9S8-Celgard. (b) Rate performances at various cycling rates with the Celgard, MOF-Celgard, and Co9S8-Celgard separators. (c) Cycling performances of Li-S cells with high sulfur-loading cathodes with Co9S8-Celgard separators. (d) Long-term cycling performances of the Li-S cells with the Co9S8-Celgard separators at 1C rate for 1,000 cycles. REFERENCES1 J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 2016, 10, 10981. 2 J. He, L. Luo, Y. Chen, A. Manthiram, Adv. Mater. 2017, 29, 1702707. 3 F. Wu, J. T. Lee, N. Nitta, H. Kim, O. Borodin, G. Yushin, Adv. Mater. 2015, 27, 101. 4 G. Zhou, S. Pei, L. Li, D. Wang, S. Wang, K. Huang, L. Yin, F. Li, H. Cheng, Adv. Mater. 2014, 26, 625. 5 J. He, Y. Chen, P. Li, F. Fu, Z. Wang, W. Zhang, J. Mater. Chem. A 2015, 3, 18605. 6 Y. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166. 7 J. He, Y. Chen, A. Manthiram, Energ. Environ. Sci. 2018, 11, 2560. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
5秒前
5秒前
虚幻初之发布了新的文献求助10
6秒前
端庄涟妖发布了新的文献求助10
7秒前
轻舟完成签到 ,获得积分10
7秒前
lalala发布了新的文献求助20
8秒前
8秒前
8秒前
文艺夏青发布了新的文献求助10
9秒前
9秒前
yqq完成签到 ,获得积分10
10秒前
lx发布了新的文献求助10
10秒前
马亚飞发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
毛益聪完成签到,获得积分10
15秒前
碧蓝的凝竹完成签到,获得积分10
16秒前
紧张的芷发布了新的文献求助10
19秒前
19秒前
20秒前
认真的初翠完成签到,获得积分10
20秒前
21秒前
爆米花应助马士全采纳,获得10
22秒前
利物浦2024完成签到,获得积分10
23秒前
23秒前
昵称发布了新的文献求助10
24秒前
领导范儿应助nihao2023采纳,获得10
24秒前
无限曲奇发布了新的文献求助10
25秒前
ChenHan发布了新的文献求助10
25秒前
可靠海白完成签到,获得积分10
28秒前
利物浦996完成签到,获得积分10
30秒前
无限曲奇完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
music完成签到 ,获得积分10
32秒前
轻松砖头关注了科研通微信公众号
32秒前
xiaoshuai发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975543
求助须知:如何正确求助?哪些是违规求助? 3519971
关于积分的说明 11200248
捐赠科研通 3256311
什么是DOI,文献DOI怎么找? 1798213
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806338