计算机科学
分子动力学
计算
力场(虚构)
领域(数学)
数据科学
计算科学
机器学习
人工智能
化学
算法
计算化学
数学
纯数学
作者
Paraskevi Gkeka,Gabriel Stoltz,Amir Barati Farimani,Zineb Belkacemi,Michele Ceriotti,John D. Chodera,Aaron R. Dinner,Andrew L. Ferguson,Jean‐Bernard Maillet,Hervé Minoux,Christine Peter,Fabio Pietrucci,Ana Silveira,Alexandre Tkatchenko,Zofia Trstanova,Rafal Wiewiora,Tony Lelièvre
标识
DOI:10.1021/acs.jctc.0c00355
摘要
Machine learning encompasses tools and algorithms that are now becoming popular in almost all scientific and technological fields. This is true for molecular dynamics as well, where machine learning offers promises of extracting valuable information from the enormous amounts of data generated by simulation of complex systems. We provide here a review of our current understanding of goals, benefits, and limitations of machine learning techniques for computational studies on atomistic systems, focusing on the construction of empirical force fields from ab initio databases and the determination of reaction coordinates for free energy computation and enhanced sampling.
科研通智能强力驱动
Strongly Powered by AbleSci AI