Multimodal data capabilities for learning: What can multimodal data tell us about learning?

计算机科学 实证研究 数据科学 人工智能 知识管理 认识论 哲学
作者
Kshitij Sharma,Michail N. Giannakos
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:51 (5): 1450-1484 被引量:132
标识
DOI:10.1111/bjet.12993
摘要

Abstract Most research on learning technology uses clickstreams and questionnaires as their primary source of quantitative data. This study presents the outcomes of a systematic literature review of empirical evidence on the capabilities of multimodal data (MMD) for human learning. This paper provides an overview of what and how MMD have been used to inform learning and in what contexts. A search resulted in 42 papers that were included in the analysis. The results of the review depict the capabilities of MMD for learning and the ongoing advances and implications that emerge from the employment of MMD to capture and improve learning. In particular, we identified the six main objectives (ie, behavioral trajectories, learning outcome, learning‐task performance, teacher support, engagement and student feedback) that the MMLA research has been focusing on. We also summarize the implications derived from the reviewed articles and frame them within six thematic areas. Finally, this review stresses that future research should consider developing a framework that would enable MMD capacities to be aligned with the research and learning design (LD). These MMD capacities could also be utilized on furthering theory and practice. Our findings set a baseline to support the adoption and democratization of MMD within future learning technology research and development. Practitioner Notes What is already known about this topic Capturing and measuring learners’ engagement and behavior using MMD has been explored in recent years and exhibits great potential. There are documented challenges and opportunities associated with capturing, processing, analyzing and interpreting MMD to support human learning. MMD can provide insights into predicting learning engagement and performance as well as into supporting the process. What this paper adds Provides a systematic literature review (SLR) of empirical evidence on MMD for human learning. Summarizes the insights MMD can give us about the learning outcomes and process. Identifies challenges and opportunities of MMD to support human learning. Implications for practice and/or policy Learning analytics researchers will be able to use the SLR as a guide for future research. Learning analytics practitioners will be able to use the SLR as a summary of the current state of the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢乐的兔子完成签到,获得积分10
1秒前
小柯基学从零学起完成签到 ,获得积分10
1秒前
甜美早晨发布了新的文献求助10
1秒前
lllby发布了新的文献求助10
4秒前
丰富的大地完成签到,获得积分10
5秒前
keroro完成签到,获得积分10
5秒前
隐形的乐枫完成签到,获得积分10
5秒前
莫道桑榆完成签到,获得积分10
6秒前
高天雨完成签到 ,获得积分10
7秒前
七七完成签到,获得积分10
8秒前
Brian完成签到,获得积分10
10秒前
昭明完成签到,获得积分10
10秒前
泡芙完成签到,获得积分10
11秒前
maomao应助Areslcy采纳,获得10
11秒前
xiaoyuan完成签到,获得积分10
11秒前
wwt完成签到,获得积分10
11秒前
luoshikun完成签到,获得积分10
12秒前
多情的飞绿完成签到 ,获得积分10
13秒前
表弟慢热手完成签到 ,获得积分10
13秒前
A阿澍完成签到,获得积分10
14秒前
辉辉完成签到,获得积分10
14秒前
15秒前
缓慢雅青完成签到 ,获得积分10
16秒前
淡然寒蕾完成签到,获得积分10
16秒前
顺心的定帮完成签到 ,获得积分10
17秒前
鞑靼完成签到 ,获得积分10
18秒前
老乡开下门吧完成签到,获得积分10
19秒前
19秒前
hyjcs完成签到,获得积分10
19秒前
lllby完成签到,获得积分10
19秒前
20秒前
zf完成签到,获得积分10
20秒前
郝煜祺完成签到,获得积分10
21秒前
爱静静应助炙热ding采纳,获得10
22秒前
广州南完成签到 ,获得积分10
23秒前
njau2005完成签到,获得积分10
24秒前
礼堂的丁真完成签到 ,获得积分10
24秒前
白紫寒完成签到,获得积分10
24秒前
英姑应助暴扣三米线采纳,获得10
25秒前
魁梧的蜜蜂完成签到,获得积分10
25秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350177
求助须知:如何正确求助?哪些是违规求助? 2975970
关于积分的说明 8672368
捐赠科研通 2657031
什么是DOI,文献DOI怎么找? 1454863
科研通“疑难数据库(出版商)”最低求助积分说明 673534
邀请新用户注册赠送积分活动 664017