亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks

记忆电阻器 神经形态工程学 计算机科学 人工神经网络 尖峰神经网络 物理神经网络 调制(音乐) 生物系统 人工智能 电子工程 物理 循环神经网络 工程类 人工神经网络的类型 生物 声学
作者
Qingxi Duan,Zhaokun Jing,Xiaolong Zou,Yanghao Wang,Yang Ke,Teng Zhang,Si Wu,Ru Huang,Yuchao Yang
出处
期刊:Nature Communications [Springer Nature]
卷期号:11 (1): 3399-3399 被引量:293
标识
DOI:10.1038/s41467-020-17215-3
摘要

Abstract As a key building block of biological cortex, neurons are powerful information processing units and can achieve highly complex nonlinear computations even in individual cells. Hardware implementation of artificial neurons with similar capability is of great significance for the construction of intelligent, neuromorphic systems. Here, we demonstrate an artificial neuron based on NbO x volatile memristor that not only realizes traditional all-or-nothing, threshold-driven spiking and spatiotemporal integration, but also enables dynamic logic including XOR function that is not linearly separable and multiplicative gain modulation among different dendritic inputs, therefore surpassing neuronal functions described by a simple point neuron model. A monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbO x memristor based neurons and nonvolatile TaO x memristor based synapses in a single crossbar array is experimentally demonstrated, showing capability in pattern recognition through online learning using a simplified δ-rule and coincidence detection, which paves the way for bio-inspired intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
kuiuLinvk发布了新的文献求助10
13秒前
18秒前
kuiuLinvk完成签到,获得积分10
21秒前
zsmj23完成签到 ,获得积分0
21秒前
采薇发布了新的文献求助10
23秒前
32秒前
科研通AI6.1应助小博采纳,获得10
33秒前
归尘发布了新的文献求助10
34秒前
53秒前
彭于晏应助凛玖niro采纳,获得10
59秒前
Stellarshi517发布了新的文献求助20
1分钟前
1分钟前
lanxinyue应助科研通管家采纳,获得10
1分钟前
1分钟前
lanxinyue应助科研通管家采纳,获得10
1分钟前
lanxinyue应助科研通管家采纳,获得10
1分钟前
lanxinyue应助科研通管家采纳,获得10
1分钟前
1分钟前
lzmcsp发布了新的文献求助10
1分钟前
1分钟前
斯文败类应助Marshall采纳,获得10
1分钟前
凛玖niro发布了新的文献求助10
1分钟前
1分钟前
科研通AI6.1应助风听你讲采纳,获得10
1分钟前
1分钟前
小博发布了新的文献求助10
1分钟前
Marshall发布了新的文献求助10
1分钟前
nie完成签到 ,获得积分10
1分钟前
凛玖niro完成签到,获得积分10
1分钟前
Marshall完成签到,获得积分10
1分钟前
ADJ完成签到,获得积分10
1分钟前
Orange应助Judy1111采纳,获得10
2分钟前
谨慎的夏发布了新的文献求助10
2分钟前
迷路千琴完成签到,获得积分10
2分钟前
FashionBoy应助迷路千琴采纳,获得10
2分钟前
香蕉面包完成签到 ,获得积分10
2分钟前
Sandy完成签到,获得积分0
3分钟前
Sandy发布了新的文献求助10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577