材料科学
纳米复合材料
各向异性
明胶
反射损耗
吸收(声学)
复合材料
复合数
微观结构
气凝胶
光电子学
光学
生物化学
物理
化学
作者
Minglong Yang,Ye Yuan,Ying Li,Xianxian Sun,Shasha Wang,Liang Lei,Yuanhao Ning,Jianjun Li,Weilong Yin,Yibin Li
标识
DOI:10.1021/acsami.0c09726
摘要
Assembling Ti3C2Tx MXene nanosheets into three-dimensional (3D) architecture with controllable alignment is of great importance for electromagnetic wave absorption (EMA) application. However, it is a great challenge to realize it due to the weak van der Waals interconnection between MXene nanosheets. Herein, we propose to introduce gelatin molecules as a "chemical glue" to fabricate the 3D Mxene@gelatin (M@G) nanocomposite aerogel using a unidirectional freeze casting method. The Ti3C2Tx MXene nanosheets are well aligned in the M@G nanocomposite aerogel, yielding much enhanced yet anisotropic mechanical properties. Due to the unidirectional aligned microstructure, the M@G nanocomposite aerogel shows significantly anisotropic EMA properties. M@G-45 shows a -59.5 dB minimum reflection loss (RLmin) at 14.04 GHz together with a 6.24 GHz effective absorption bandwidth in the parallel direction (relative to the direction of unidirectional freeze casting). However, in the vertical direction of the same M@G aerogel, RLmin is shifted to a much lower frequency (4.08 GHz) and the effective absorption bandwidth decreases to 0.86 GHz. The anisotropic electromagnetic energy dissipation mechanism was deeply investigated, and the impendence match plays a critical role for electromagnetic wave penetration. Our lightweight M@G nanocomposite aerogel with controllable MXene alignment is very promising in EMA application.
科研通智能强力驱动
Strongly Powered by AbleSci AI