Spatial-channel relation learning for brain tumor segmentation.

分割 模式识别(心理学) 卷积神经网络 医学影像学 图像分割 脑瘤
作者
Guohua Cheng,Hongli Ji,Zhongxiang Ding
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 4885-4894 被引量:4
标识
DOI:10.1002/mp.14392
摘要

PURPOSE Recently, research on brain tumor segmentation has made great progress. However, ambiguous patterns in magnetic resonance imaging data and linear fusion omitting semantic gaps between features in different branches remain challenging. We need to design a mechanism to fully utilize the similarity within the spatial space and channel space and the correlation between these two spaces to improve the result of volumetric segmentation. METHODS We propose a revised cascade structure network. In each subnetwork, a context exploitation module is introduced between the encoder and decoder, in which the dual attention mechanism is adopted to learn the information within the spatial space and channel space, and space interaction learning is employed to model the relation between the spatial and channel spaces. RESULTS Extensive experiments on the BraTS19 dataset have evaluated that our approach improves the dice coefficient (DC) by a margin of 2.1, 2.0, and 1.4 for whole tumor (WT), tumor core (TC), and enhancing tumor (ET), respectively, obtaining results competitive with the state-of-art approaches working on brain tumor segmentation. CONCLUSIONS Context exploitation in the embedding feature spaces, including intraspace relations and interspace relations, can effectively model dependency in semantic features and alleviate the semantic gap in multimodel data. Our approach is also robust to variations in different modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助lzy采纳,获得10
1秒前
黄海完成签到,获得积分10
1秒前
李健应助高山我梦采纳,获得10
2秒前
善良豌豆发布了新的文献求助10
2秒前
nyazero关注了科研通微信公众号
2秒前
阔达的萤发布了新的文献求助10
2秒前
2秒前
所所应助lyh采纳,获得10
3秒前
脑洞疼应助张美美采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
啊嚯完成签到,获得积分10
4秒前
王毅医生转化医学完成签到,获得积分10
4秒前
黄海发布了新的文献求助10
4秒前
yy发布了新的文献求助10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
yznfly应助科研通管家采纳,获得50
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
DD应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
爆米花应助清笙采纳,获得10
7秒前
7秒前
爱学习的小克拉米完成签到,获得积分10
7秒前
nanyang发布了新的文献求助10
7秒前
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974643
求助须知:如何正确求助?哪些是违规求助? 3519094
关于积分的说明 11196979
捐赠科研通 3255182
什么是DOI,文献DOI怎么找? 1797700
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130