Rapid Response DAS Denoising Method Based on Deep Learning

降噪 计算机科学 噪音(视频) 人工智能 信号处理 信号(编程语言) 卷积神经网络 视频去噪 模式识别(心理学) 数字信号处理 视频处理 计算机硬件 多视点视频编码 图像(数学) 程序设计语言 视频跟踪
作者
Maoning Wang,Lin Deng,Yuzhong Zhong,Jianwei Zhang,Fei Peng
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:39 (8): 2583-2593 被引量:28
标识
DOI:10.1109/jlt.2021.3052651
摘要

In most optical fiber distributed acoustic sensing (DAS) systems, to obtain the desired outcome, the sensing signal acquired by DAS systems normally needs to be denoised. In some applications, such as the identifiation of the position of fast-moving targets, we need DAS systems to respond with sufficient speed. However, most classical denoising algorithms do not work if the signals are insufficiently collected within a short period (called a short-time signal). To obtain ideal results within a short time window, we propose an attention-based convolutional neural network (CNN) structure with extremely short signal windows to learn and approximate the results of classical denoising methods. To evaluate the effectiveness of the proposed method, the experiment is conducted under a real field highway scenario where the desired signals are overwhelmed with noise. The results show that by using signals collected within extremely short time windows of 100 ms, an insufficient time for the processing of existing denoising algorithms, our structure yields a satisfactory denoising performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
1秒前
CharlotteBlue应助科研通管家采纳,获得30
1秒前
大模型应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
herococa应助科研通管家采纳,获得10
1秒前
会飞的鱼应助听心采纳,获得30
2秒前
开心灰狼完成签到 ,获得积分10
2秒前
3秒前
3秒前
Owen应助幸福广山采纳,获得10
5秒前
8R60d8应助山有扶苏采纳,获得10
5秒前
momo完成签到,获得积分10
5秒前
在水一方应助ff采纳,获得10
5秒前
7秒前
7秒前
洁面乳完成签到,获得积分10
8秒前
dan关注了科研通微信公众号
8秒前
8秒前
燧石完成签到,获得积分10
8秒前
ggappsong发布了新的文献求助10
9秒前
失忆ing发布了新的文献求助10
9秒前
谥輄完成签到,获得积分10
10秒前
10秒前
大气的乌冬面完成签到,获得积分10
11秒前
11秒前
胡娇妮发布了新的文献求助10
11秒前
12秒前
13秒前
CharlotteBlue应助NanArtist采纳,获得30
14秒前
天天快乐应助朴实的绣连采纳,获得10
15秒前
zgy发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143