鉴定(生物学)
非线性系统
电力系统
符号回归
系统标识
计算机科学
发电机(电路理论)
水准点(测量)
噪音(视频)
非线性系统辨识
动力系统理论
算法
边界(拓扑)
符号数据分析
三角学
系统动力学
数据建模
功率(物理)
数学
人工智能
理论计算机科学
数学分析
物理
植物
大地测量学
量子力学
数据库
图像(数学)
生物
遗传程序设计
地理
几何学
作者
Andrija T. Saria,Aleksandar A. Sarić,Mark K. Transtrum,A.M. Stanković
标识
DOI:10.1109/tpwrs.2020.3033261
摘要
This paper describes a data-driven symbolic regression identification method tailored to power systems and demonstrated on different synchronous generator (SG) models. In this work, we extend the sparse identification of nonlinear dynamics (SINDy) modeling procedure to include the effects of exogenous signals (measurements), nonlinear trigonometric terms in the library of elements, equality, and boundary constraints of expected solution. We show that the resulting framework requires fairly little in terms of data, and is computationally efficient and robust to noise, making it a viable candidate for online identification in response to rapid system changes. The SINDy-based model identification is integrated with the manifold boundary approximation method (MBAM) for the reduction of the differential-algebraic equations (DAE)-based SG dynamic models (decrease in the number of states and parameters). The proposed procedure is illustrated on an SG example in a real-world 441-bus and 67-machine benchmark.
科研通智能强力驱动
Strongly Powered by AbleSci AI