亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image-Text Multimodal Emotion Classification via Multi-View Attentional Network

计算机科学 人工智能 杠杆(统计) 情绪分析 模式识别(心理学) 自然语言处理 特征(语言学) 机器学习 语言学 哲学
作者
Xiaocui Yang,Shi Feng,Daling Wang,Yifei Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 4014-4026 被引量:145
标识
DOI:10.1109/tmm.2020.3035277
摘要

Compared with single-modal content, multimodal data can express users’ feelings and sentiments more vividly and interestingly. Therefore, multimodal sentiment analysis has become a popular research topic. However, most existing methods either learn modal sentiment feature independently, without considering their correlations, or they simply integrate multimodal features. In addition, most publicly available multimodal datasets are labeled by sentiment polarities, while the emotions expressed by users are specific. Based on this observation, in this paper, we build a large-scale image-text emotion dataset (i.e., labeled by different emotions), called TumEmo, with more than 190,000 instances from Tumblr. 1 We further propose a novel multimodal emotion analysis model based on the Multi-view Attentional Network (MVAN), which utilizes a memory network that is continually updated to obtain the deep semantic features of image-text. The model includes three stages: feature mapping, interactive learning, and feature fusion. In the feature mapping stage, we leverage image features from an object viewpoint and a scene viewpoint to capture effective information for multimodal emotion analysis. Then, an interactive learning mechanism is adopted that uses the memory network; this mechanism extracts single-modal emotion features and interactively models the cross-view dependencies between the image and text. In the feature fusion stage, multiple features are deeply fused using a multilayer perceptron and a stacking-pooling module. The experimental results on the MVSA-Single, MVSA-Multiple, and TumEmo datasets show that the proposed MVAN outperforms strong baseline models by large margins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小红书求接接接接一篇完成签到,获得积分10
8秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
嘉心糖应助小叶不吃香菜采纳,获得30
32秒前
聪明灭绝完成签到 ,获得积分10
52秒前
惜寒完成签到 ,获得积分10
54秒前
顺利又菱完成签到 ,获得积分10
57秒前
田様应助MY采纳,获得10
1分钟前
1分钟前
lsk发布了新的文献求助10
1分钟前
1分钟前
义气的惜海完成签到,获得积分10
1分钟前
天天快乐应助前程似锦采纳,获得10
1分钟前
852应助Yu采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
许愿完成签到 ,获得积分10
2分钟前
2分钟前
靳言完成签到,获得积分20
2分钟前
小小猪完成签到,获得积分10
2分钟前
tuanheqi应助Christopher5812采纳,获得30
2分钟前
科研通AI2S应助鬼见愁采纳,获得20
2分钟前
丰富大雁完成签到 ,获得积分10
3分钟前
3分钟前
zqq完成签到,获得积分0
3分钟前
180霸总完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
严珍珍完成签到 ,获得积分10
4分钟前
Yu发布了新的文献求助10
4分钟前
4分钟前
4分钟前
MY发布了新的文献求助10
4分钟前
4分钟前
欣喜忻完成签到,获得积分10
5分钟前
爱静静应助qmln4采纳,获得10
5分钟前
5分钟前
科目三应助失眠的以蓝采纳,获得10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311065
求助须知:如何正确求助?哪些是违规求助? 2943900
关于积分的说明 8516683
捐赠科研通 2619240
什么是DOI,文献DOI怎么找? 1432161
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810