材料科学
电解质
电极
气泡
电解
电流密度
多孔性
化学工程
氢
碱性水电解
电解水
电流(流体)
聚结(物理)
非阻塞I/O
催化作用
纳米技术
复合材料
化学
热力学
机械
物理化学
工程类
物理
有机化学
天体生物学
量子力学
生物化学
作者
Tianyi Kou,Shanwen Wang,Rongpei Shi,Tao Zhang,Samuel Chiovoloni,Jennifer Lu,Wen Chen,Marcus A. Worsley,Brandon C. Wood,Sarah E. Baker,Eric B. Duoss,Rui Wu,Cheng Zhu,Yat Li
标识
DOI:10.1002/aenm.202002955
摘要
Abstract Alkaline water electrolysis at high current densities is plagued by gas bubble generation and trapping in stochastic porous electrodes (e.g., Ni foams), which causes a significant reduction in the number of electrolyte accessible catalyst active sites. Here, 3D printed Ni (3DPNi) electrodes with highly controlled, periodic structures are reported that suppress gas bubble coalescence, jamming, and trapping and, hence, result in rapid bubble release. The 3DPNi electrodes decorated with carbon‐doped NiO achieve a high current density of 1000 mA cm −2 in 1.0 m KOH electrolyte at hydrogen evolution reaction and oxygen evolution reaction overpotentials of 245 and 425 mV, respectively. This work demonstrates a new approach to the deterministic design of 3D electrodes to facilitate rapid bubble transport and release to enhance the total electrode catalytic activity at commercially relevant current densities.
科研通智能强力驱动
Strongly Powered by AbleSci AI