DSLR: Deep Stacked Laplacian Restorer for Low-Light Image Enhancement

计算机科学 人工智能 计算机视觉 计算机图形学(图像) 模式识别(心理学)
作者
Seokjae Lim,Wonjun Kim
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 4272-4284 被引量:169
标识
DOI:10.1109/tmm.2020.3039361
摘要

Various images captured in complicated lighting conditions often suffer from deterioration of the image quality. Such poor quality not only dissatisfies the user expectation but also may lead to a significant performance drop in many applications. In this paper, anovel method for low-light image enhancement is proposed by leveraging useful propertiesof the Laplacian pyramid both in image and feature spaces. Specifically, the proposed method, so-called a deep stacked Laplacian restorer (DSLR), is capable of separately recovering the global illumination and local details from the original input, and progressively combining them in the image space. Moreover, the Laplacian pyramid defined in the feature space makes such recovering processes more efficient based on abundant connectionsof higher-order residuals in a multiscale structure. This decomposition-based scheme is fairly desirable for learning the highly nonlinear relation between degraded images and their enhanced results. Experimental results on various datasets demonstrate that the proposed DSLR outperforms state-of-the-art methods. The code and model are publicly available at: https://github.com/SeokjaeLIM/DSLR-release .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助DK采纳,获得10
1秒前
快乐小白菜完成签到,获得积分10
1秒前
joy完成签到,获得积分10
1秒前
1秒前
1秒前
孟春纪事完成签到,获得积分10
2秒前
清爽忆山完成签到,获得积分10
2秒前
小马甲应助轻松的怜容采纳,获得10
2秒前
Grayball应助噢噢采纳,获得10
2秒前
言辞完成签到,获得积分10
2秒前
小柠檬完成签到,获得积分20
2秒前
2秒前
土豆丝完成签到 ,获得积分10
3秒前
念念完成签到,获得积分10
3秒前
乐乐应助starry采纳,获得10
3秒前
温暖冰珍完成签到 ,获得积分10
3秒前
淳之风完成签到,获得积分20
4秒前
CarterXD应助hao采纳,获得30
4秒前
科研rain完成签到 ,获得积分10
4秒前
4秒前
清爽忆山发布了新的文献求助10
5秒前
睡觉晒太阳完成签到,获得积分10
5秒前
andy完成签到,获得积分10
5秒前
5秒前
Itachi12138完成签到,获得积分10
5秒前
CipherSage应助蓝莓松饼采纳,获得10
5秒前
5秒前
团团完成签到,获得积分10
5秒前
追寻的易烟完成签到,获得积分10
5秒前
snow完成签到,获得积分10
6秒前
6秒前
6秒前
1111完成签到,获得积分20
7秒前
爆米花应助笑点低蜜蜂采纳,获得10
7秒前
橘子味汽水完成签到 ,获得积分10
7秒前
Victor陈完成签到,获得积分10
7秒前
7秒前
seed85完成签到,获得积分10
7秒前
最初完成签到,获得积分20
8秒前
Hello应助Chem is try采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672