计算机科学
人工智能
计算机视觉
计算机图形学(图像)
模式识别(心理学)
作者
Seokjae Lim,Wonjun Kim
标识
DOI:10.1109/tmm.2020.3039361
摘要
Various images captured in complicated lighting conditions often suffer from deterioration of the image quality. Such poor quality not only dissatisfies the user expectation but also may lead to a significant performance drop in many applications. In this paper, anovel method for low-light image enhancement is proposed by leveraging useful propertiesof the Laplacian pyramid both in image and feature spaces. Specifically, the proposed method, so-called a deep stacked Laplacian restorer (DSLR), is capable of separately recovering the global illumination and local details from the original input, and progressively combining them in the image space. Moreover, the Laplacian pyramid defined in the feature space makes such recovering processes more efficient based on abundant connectionsof higher-order residuals in a multiscale structure. This decomposition-based scheme is fairly desirable for learning the highly nonlinear relation between degraded images and their enhanced results. Experimental results on various datasets demonstrate that the proposed DSLR outperforms state-of-the-art methods. The code and model are publicly available at: https://github.com/SeokjaeLIM/DSLR-release .
科研通智能强力驱动
Strongly Powered by AbleSci AI