微观世界
盐度
沉积物
微生物种群生物学
环境化学
有机质
生态系统
生态学
孵化
微生物
矿化(土壤科学)
环境科学
化学
生物
地质学
细菌
地貌学
遗传学
生物化学
土壤水分
作者
Jian Yang,Yao Chen,Weiyu She,Haiyi Xiao,Zheng Wang,Huanye Wang,Weiguo Liu,Hongchen Jiang
摘要
Abstract Priming effects (PEs) and their associated microbial drivers are not well studied in lake sediments. Here, we investigated PEs and underlying potential microbial drivers in the sediments of lakes on the Qinghai‐Tibetan Plateau (QTP). Sediments were collected from three QTP lakes with different salinity, followed by microcosm construction and subsequent incubation at in situ temperature. The sediment microcosms were amended with 13 C‐labeled glucose, on which PE intensities were evaluated in the incubations on Days 7 and 42. Positive PEs were observed in all the studied lake sediment microcosms. PE intensities exhibited significantly ( p < 0.05) linear correlations with most of the measured physicochemical factors (e.g., salinity, sediment total nitrogen/phosphorus, and ratios of carbon:nitrogen), and such linear correlations were inverse for the early (i.e., on Day 7) and late (i.e., on Day 42) PEs. Prokaryotic and fungal community compositions significantly changed owing to glucose addition in the studied lake microcosms, suggesting that both prokaryotes and fungi may contribute to the observed PEs. Network analysis showed that the numbers of positive correlations between fungal taxa and other microorganisms increased with the enhancement of the late PE intensity, suggesting that fungi and associated co‐metabolisms may play key roles in late PEs in this study. Collectively, this study gives new insights into PE intensity and underlying microbial drivers of PE in lake sediments, and such knowledge is of great importance to understanding organic matter mineralization in lake ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI