Interpretation of mitochondrial tRNA variants

异质性 转移RNA 遗传学 表型 生物 线粒体DNA 临床意义 线粒体肌病 计算生物学 生物信息学 核糖核酸 医学 基因 病理
作者
Lee‐Jun C. Wong,Ting Chen,Jing Wang,Sha Tang,Eric Schmitt,Megan Landsverk,Fangyuan Li,Yue Wang,Shulin Zhang,Victor Wei Zhang,William J. Craigen
出处
期刊:Genetics in Medicine [Springer Nature]
卷期号:22 (5): 917-926 被引量:48
标识
DOI:10.1038/s41436-019-0746-0
摘要

To develop criteria to interpret mitochondrial transfer RNA (mt-tRNA) variants based on unique characteristics of mitochondrial genetics and conserved structural/functional properties of tRNA.We developed rules on a set of established pathogenic/benign variants by examining heteroplasmy correlations with phenotype, tissue distribution, family members, and among unrelated families from published literature. We validated these deduced rules using our new cases and applied them to classify novel variants.Evaluation of previously reported pathogenic variants found that 80.6% had sufficient evidence to support phenotypic correlation with heteroplasmy levels among and within families. The remaining variants were downgraded due to the lack of similar evidence. Application of the verified criteria resulted in rescoring 80.8% of reported variants of uncertain significance (VUS) to benign and likely benign. Among 97 novel variants, none met pathogenic criteria. A large proportion of novel variants (84.5%) remained as VUS, while only 10.3% were likely pathogenic. Detection of these novel variants in additional individuals would facilitate their classification.Proper interpretation of mt-tRNA variants is crucial for accurate clinical diagnosis and genetic counseling. Correlations with tissue distribution, heteroplasmy levels, predicted perturbations to tRNA structure, and phenotypes provide important evidence for determining the clinical significance of mt-tRNA variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李唯佳完成签到 ,获得积分10
刚刚
zyt完成签到,获得积分10
刚刚
adasdad完成签到 ,获得积分10
刚刚
1秒前
嘿嘿完成签到 ,获得积分10
1秒前
1秒前
2秒前
tanmeng77发布了新的文献求助10
2秒前
3秒前
艺玲完成签到,获得积分10
3秒前
每天都想下班完成签到 ,获得积分10
3秒前
4秒前
圈圈发布了新的文献求助10
4秒前
忧郁的听露关注了科研通微信公众号
4秒前
风趣的涵柏完成签到,获得积分10
4秒前
5秒前
5秒前
成就梦松发布了新的文献求助10
5秒前
1233333完成签到,获得积分10
5秒前
ding应助EunolusZ采纳,获得10
5秒前
Andy完成签到 ,获得积分10
6秒前
艺玲发布了新的文献求助10
6秒前
yls完成签到,获得积分10
6秒前
wang完成签到,获得积分10
7秒前
MADKAI发布了新的文献求助10
8秒前
lulu完成签到,获得积分10
9秒前
沉静青寒完成签到,获得积分10
9秒前
REN关闭了REN文献求助
10秒前
好运锦鲤完成签到 ,获得积分10
10秒前
美有姬完成签到,获得积分10
11秒前
万能图书馆应助何博士采纳,获得10
11秒前
科研通AI2S应助蘑菇采纳,获得10
11秒前
一平发布了新的文献求助10
12秒前
王一博完成签到,获得积分10
12秒前
13秒前
nihil完成签到,获得积分10
13秒前
活力的泥猴桃完成签到 ,获得积分10
14秒前
14秒前
15秒前
obito完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672