Adaptive chaotic maps and their application to pseudo-random numbers generation

混乱的 加密 参数统计 算法 数学 随机性 密钥空间 计算机科学 理论计算机科学 统计物理学 人工智能 统计 操作系统 物理
作者
Александра Тутуева,Erivelton G. Nepomuceno,A. Karimov,В. С. Андреев,Денис Бутусов
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:133: 109615-109615 被引量:121
标识
DOI:10.1016/j.chaos.2020.109615
摘要

Chaos-based stream ciphers form a prospective class of data encryption techniques. Usually, in chaos-based encryption schemes, the pseudo-random generators based on chaotic maps are used as a source of randomness. Despite the variety of proposed algorithms, nearly all of them possess many shortcomings. While sequences generated from single-parameter chaotic maps can be easily compromised using the phase space reconstruction method, the employment of multi-parametric maps requires a thorough analysis of the parameter space to establish the areas of chaotic behavior. This complicates the determination of the possible keys for the encryption scheme. Another problem is the degradation of chaotic dynamics in the implementation of the digital chaos generator with finite precision. To avoid the appearance of quasi-chaotic regimes, additional perturbations are usually introduced into the chaotic maps, making the generation scheme more complex and influencing the oscillations regime. In this study, we propose a novel technique utilizing the chaotic maps with adaptive symmetry to create chaos-based encryption schemes with larger parameter space. We compare pseudo-random generators based on the traditional Zaslavsky map and the new adaptive Zaslavsky web map through multi-parametric bifurcation analysis and investigate the parameter spaces of the maps. We explicitly show that pseudo-random sequences generated by the adaptive Zaslavsky map are random, have a weak correlation and possess a larger parameter space. We also present the technique of increasing the period of the chaotic sequence based on the variability of the symmetry coefficient. The speed analysis shows that the proposed encryption algorithm possesses a high encryption speed, being compatible with the best solutions in a field. The obtained results can improve the chaos-based cryptography and inspire further studies of chaotic maps as well as the synthesis of novel discrete models with desirable statistical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
牛牛发布了新的文献求助10
刚刚
zxy应助zianlai采纳,获得10
1秒前
桐桐应助忧郁的猕猴桃采纳,获得10
1秒前
科目三应助YAMO一采纳,获得10
2秒前
苏苏发布了新的文献求助20
3秒前
达克赛德发布了新的文献求助10
3秒前
Peter_Zhu完成签到,获得积分10
3秒前
脑洞疼应助热情起眸采纳,获得10
3秒前
Sy发布了新的文献求助10
4秒前
瘦瘦语蕊发布了新的文献求助10
5秒前
5秒前
慕青应助柳大宝采纳,获得10
6秒前
爱大美完成签到,获得积分10
6秒前
李子发布了新的文献求助10
6秒前
XJ发布了新的文献求助10
7秒前
8秒前
独孤骄子完成签到 ,获得积分0
8秒前
Cell完成签到 ,获得积分10
9秒前
Cell完成签到 ,获得积分10
9秒前
传奇3应助kingjames采纳,获得10
9秒前
富富富发布了新的文献求助10
9秒前
kk发布了新的文献求助10
10秒前
10秒前
10秒前
MaFY完成签到,获得积分10
11秒前
自信鞯完成签到,获得积分10
12秒前
judy发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
瘦瘦语蕊完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
李键刚完成签到 ,获得积分10
17秒前
Miko发布了新的文献求助10
17秒前
17秒前
赘婿应助美丽心情采纳,获得10
17秒前
17秒前
简单的元珊完成签到,获得积分10
17秒前
XJ完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502600
关于积分的说明 11109235
捐赠科研通 3233391
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870607
科研通“疑难数据库(出版商)”最低求助积分说明 802123