Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks

衰减校正 衰减 PET-CT 人工智能 心脏成像 医学 生成对抗网络 核医学 深度学习 正电子发射断层摄影术 模式识别(心理学) 计算机科学 放射科 物理 光学
作者
Karim Armanious,Tobias Hepp,Thomas Küstner,Helmut Dittmann,Konstantin Nikolaou,Christian la Fougère,Bin Yang,Sergios Gatidis
出处
期刊:EJNMMI research [Springer Nature]
卷期号:10 (1) 被引量:46
标识
DOI:10.1186/s13550-020-00644-y
摘要

Attenuation correction (AC) of PET data is usually performed using a second imaging for the generation of attenuation maps. In certain situations however-when CT- or MR-derived attenuation maps are corrupted or CT acquisition solely for the purpose of AC shall be avoided-it would be of value to have the possibility of obtaining attenuation maps only based on PET information. The purpose of this study was to thus develop, implement, and evaluate a deep learning-based method for whole body [18F]FDG-PET AC which is independent of other imaging modalities for acquiring the attenuation map.The proposed method is investigated on whole body [18F]FDG-PET data using a Generative Adversarial Networks (GAN) deep learning framework. It is trained to generate pseudo CT images (CTGAN) based on paired training data of non-attenuation corrected PET data (PETNAC) and corresponding CT data. Generated pseudo CTs are then used for subsequent PET AC. One hundred data sets of whole body PETNAC and corresponding CT were used for training. Twenty-five PET/CT examinations were used as test data sets (not included in training). On these test data sets, AC of PET was performed using the acquired CT as well as CTGAN resulting in the corresponding PET data sets PETAC and PETGAN. CTGAN and PETGAN were evaluated qualitatively by visual inspection and by visual analysis of color-coded difference maps. Quantitative analysis was performed by comparison of organ and lesion SUVs between PETAC and PETGAN.Qualitative analysis revealed no major SUV deviations on PETGAN for most anatomic regions; visually detectable deviations were mainly observed along the diaphragm and the lung border. Quantitative analysis revealed mean percent deviations of SUVs on PETGAN of - 0.8 ± 8.6% over all organs (range [- 30.7%, + 27.1%]). Mean lesion SUVs showed a mean deviation of 0.9 ± 9.2% (range [- 19.6%, + 29.2%]).Independent AC of whole body [18F]FDG-PET is feasible using the proposed deep learning approach yielding satisfactory PET quantification accuracy. Further clinical validation is necessary prior to implementation in clinical routine applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaarfv发布了新的文献求助10
1秒前
1秒前
hi尚云飞完成签到,获得积分10
2秒前
颜林林发布了新的文献求助10
2秒前
hgzz发布了新的文献求助10
3秒前
不眠的人完成签到,获得积分10
3秒前
无私鹰发布了新的文献求助10
5秒前
maplesirup发布了新的文献求助10
6秒前
科研通AI2S应助小山隹采纳,获得10
6秒前
sum42发布了新的文献求助10
8秒前
脑洞疼应助1112采纳,获得10
8秒前
midoli发布了新的文献求助10
9秒前
小郝完成签到,获得积分10
9秒前
fangpiupiu完成签到 ,获得积分10
9秒前
10秒前
桐桐应助稳重海豚采纳,获得10
10秒前
11秒前
球球发布了新的文献求助10
12秒前
12秒前
13秒前
小康完成签到,获得积分10
14秒前
刘可望发布了新的文献求助10
15秒前
15秒前
15秒前
liusoojoo完成签到,获得积分10
16秒前
17秒前
sukasuka发布了新的文献求助10
17秒前
17秒前
Owen应助木子弓长采纳,获得10
17秒前
17秒前
王哲发布了新的文献求助10
19秒前
zx发布了新的文献求助10
20秒前
1112发布了新的文献求助10
20秒前
maplesirup完成签到,获得积分10
21秒前
22秒前
22秒前
稳重海豚发布了新的文献求助10
23秒前
23秒前
斯文败类应助滴滴滴采纳,获得10
23秒前
midoli完成签到,获得积分10
24秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416639
求助须知:如何正确求助?哪些是违规求助? 3018421
关于积分的说明 8884216
捐赠科研通 2705746
什么是DOI,文献DOI怎么找? 1483866
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681004