亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and External Validation of Radiomics Approach for Nuclear Grading in Clear Cell Renal Cell Carcinoma

医学 无线电技术 接收机工作特性 肾透明细胞癌 肾细胞癌 分级(工程) 随机森林 放射科 人工智能 特征(语言学) 核医学 医学影像学 计算机科学 病理 内科学 土木工程 哲学 工程类 语言学
作者
Hongyu Zhou,Haixia Mao,Di Dong,Mengjie Fang,Dongsheng Gu,Xueling Liu,Min Xu,Shudong Yang,Jian Zou,Ruohan Yin,Hairong Zheng,Jie Tian,Changjie Pan,Xiangming Fang
出处
期刊:Annals of Surgical Oncology [Springer Nature]
卷期号:27 (10): 4057-4065 被引量:25
标识
DOI:10.1245/s10434-020-08255-6
摘要

Nuclear grades of clear cell renal cell carcinoma (ccRCC) are usually confirmed by invasive methods. Radiomics is a quantitative tool that uses non-invasive medical imaging for tumor diagnosis and prognosis. In this study, a radiomics approach was proposed to analyze the association between preoperative computed tomography (CT) images and nuclear grades of ccRCC.Our dataset included 320 ccRCC patients from two centers and was divided into a training set (n = 124), an internal test set (n = 123), and an external test set (n = 73). A radiomic feature set was extracted from unenhanced, corticomedullary phase, and nephrographic phase CT images. The maximizing independent classification information criteria function and recursive feature elimination with cross-validation were used to select effective features. Random forests were used to build a final model for predicting nuclear grades, and area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of radiomic features and models.The radiomic features from the three CT phases could effectively distinguished the four nuclear grades. A combined model, merging radiomic features and clinical characteristics, obtained good predictive performances in the internal test set (AUC 0.77, 0.75, 0.79, and 0.85 for the four grades, respectively), and performance was further confirmed in the external test set, with AUCs of 0.75, 0.68, and 0.73 (no fourth-level data).The combination of CT radiomic features and clinical characteristics could discriminate the nuclear grades in ccRCC, which may help in assisting treatment decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Re发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
46秒前
su完成签到 ,获得积分10
54秒前
阿里完成签到,获得积分10
57秒前
阿里发布了新的文献求助30
1分钟前
1分钟前
1分钟前
pengpengyin发布了新的文献求助10
1分钟前
咔敏完成签到,获得积分10
2分钟前
咔敏发布了新的文献求助10
2分钟前
pengpengyin完成签到,获得积分10
2分钟前
2分钟前
小二郎应助七安得安采纳,获得30
3分钟前
平常囧完成签到,获得积分10
3分钟前
李健应助跳跃的小之采纳,获得10
3分钟前
3分钟前
3分钟前
火速阿百川完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
奶油蜜豆卷完成签到,获得积分10
4分钟前
浮曳完成签到,获得积分10
4分钟前
iShine完成签到 ,获得积分10
4分钟前
顺心蜜粉发布了新的文献求助10
5分钟前
5分钟前
寻道图强应助顺心蜜粉采纳,获得100
5分钟前
七安得安发布了新的文献求助30
5分钟前
上官若男应助七安得安采纳,获得10
5分钟前
大胆砖头完成签到 ,获得积分10
5分钟前
6分钟前
七安得安发布了新的文献求助10
6分钟前
七安得安完成签到,获得积分10
6分钟前
手可摘星陈同学完成签到 ,获得积分10
6分钟前
6分钟前
黄油小熊完成签到 ,获得积分10
6分钟前
Luke发布了新的文献求助10
6分钟前
盼盼完成签到 ,获得积分10
7分钟前
科研辣鸡发布了新的文献求助10
8分钟前
8分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064