Development and External Validation of Radiomics Approach for Nuclear Grading in Clear Cell Renal Cell Carcinoma

医学 无线电技术 接收机工作特性 肾透明细胞癌 肾细胞癌 分级(工程) 随机森林 放射科 人工智能 特征(语言学) 核医学 医学影像学 计算机科学 病理 内科学 土木工程 哲学 工程类 语言学
作者
Hongyu Zhou,Haixia Mao,Di Dong,Mengjie Fang,Dongsheng Gu,Xueling Liu,Min Xu,Shudong Yang,Jian Zou,Ruohan Yin,Hairong Zheng,Jie Tian,Changjie Pan,Xiangming Fang
出处
期刊:Annals of Surgical Oncology [Springer Nature]
卷期号:27 (10): 4057-4065 被引量:25
标识
DOI:10.1245/s10434-020-08255-6
摘要

Nuclear grades of clear cell renal cell carcinoma (ccRCC) are usually confirmed by invasive methods. Radiomics is a quantitative tool that uses non-invasive medical imaging for tumor diagnosis and prognosis. In this study, a radiomics approach was proposed to analyze the association between preoperative computed tomography (CT) images and nuclear grades of ccRCC.Our dataset included 320 ccRCC patients from two centers and was divided into a training set (n = 124), an internal test set (n = 123), and an external test set (n = 73). A radiomic feature set was extracted from unenhanced, corticomedullary phase, and nephrographic phase CT images. The maximizing independent classification information criteria function and recursive feature elimination with cross-validation were used to select effective features. Random forests were used to build a final model for predicting nuclear grades, and area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of radiomic features and models.The radiomic features from the three CT phases could effectively distinguished the four nuclear grades. A combined model, merging radiomic features and clinical characteristics, obtained good predictive performances in the internal test set (AUC 0.77, 0.75, 0.79, and 0.85 for the four grades, respectively), and performance was further confirmed in the external test set, with AUCs of 0.75, 0.68, and 0.73 (no fourth-level data).The combination of CT radiomic features and clinical characteristics could discriminate the nuclear grades in ccRCC, which may help in assisting treatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wjh发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
整齐的白筠完成签到,获得积分10
2秒前
WWWUBING完成签到,获得积分10
3秒前
小文发布了新的文献求助10
3秒前
MJQ发布了新的文献求助10
3秒前
3秒前
春夏秋冬发布了新的文献求助10
4秒前
4秒前
4秒前
李健的小迷弟应助nn采纳,获得10
4秒前
彭于晏应助sunzhiyu233采纳,获得10
5秒前
5秒前
zzznznnn完成签到,获得积分10
5秒前
5秒前
马保国123发布了新的文献求助10
5秒前
5秒前
慕青应助wsljc134采纳,获得10
5秒前
6秒前
世界尽头完成签到,获得积分10
7秒前
7秒前
君与完成签到,获得积分10
7秒前
yili发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助专注乐巧采纳,获得10
8秒前
自信晟睿发布了新的文献求助10
8秒前
8秒前
9秒前
七里香完成签到 ,获得积分10
9秒前
handsomecat关注了科研通微信公众号
9秒前
细心映寒完成签到 ,获得积分10
9秒前
9秒前
fff完成签到,获得积分10
9秒前
领导范儿应助MJQ采纳,获得100
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759