Development and External Validation of Radiomics Approach for Nuclear Grading in Clear Cell Renal Cell Carcinoma

医学 无线电技术 接收机工作特性 肾透明细胞癌 肾细胞癌 分级(工程) 随机森林 放射科 人工智能 特征(语言学) 核医学 医学影像学 计算机科学 病理 内科学 土木工程 哲学 工程类 语言学
作者
Hongyu Zhou,Haixia Mao,Di Dong,Mengjie Fang,Dongsheng Gu,Xueling Liu,Min Xu,Shudong Yang,Jian Zou,Ruohan Yin,Hairong Zheng,Jie Tian,Changjie Pan,Xiangming Fang
出处
期刊:Annals of Surgical Oncology [Springer Science+Business Media]
卷期号:27 (10): 4057-4065 被引量:25
标识
DOI:10.1245/s10434-020-08255-6
摘要

Nuclear grades of clear cell renal cell carcinoma (ccRCC) are usually confirmed by invasive methods. Radiomics is a quantitative tool that uses non-invasive medical imaging for tumor diagnosis and prognosis. In this study, a radiomics approach was proposed to analyze the association between preoperative computed tomography (CT) images and nuclear grades of ccRCC.Our dataset included 320 ccRCC patients from two centers and was divided into a training set (n = 124), an internal test set (n = 123), and an external test set (n = 73). A radiomic feature set was extracted from unenhanced, corticomedullary phase, and nephrographic phase CT images. The maximizing independent classification information criteria function and recursive feature elimination with cross-validation were used to select effective features. Random forests were used to build a final model for predicting nuclear grades, and area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of radiomic features and models.The radiomic features from the three CT phases could effectively distinguished the four nuclear grades. A combined model, merging radiomic features and clinical characteristics, obtained good predictive performances in the internal test set (AUC 0.77, 0.75, 0.79, and 0.85 for the four grades, respectively), and performance was further confirmed in the external test set, with AUCs of 0.75, 0.68, and 0.73 (no fourth-level data).The combination of CT radiomic features and clinical characteristics could discriminate the nuclear grades in ccRCC, which may help in assisting treatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海洋完成签到,获得积分10
3秒前
3秒前
扶手发布了新的文献求助10
4秒前
7秒前
xiangjun发布了新的文献求助20
7秒前
10秒前
酷波er应助海德堡采纳,获得10
10秒前
ren完成签到 ,获得积分10
11秒前
酷波er应助咕噜采纳,获得10
13秒前
七曜发布了新的文献求助10
13秒前
13秒前
yx_cheng应助LXY采纳,获得20
14秒前
桃之夭夭完成签到,获得积分10
14秒前
666关闭了666文献求助
14秒前
federish完成签到 ,获得积分10
15秒前
橙子发布了新的文献求助10
15秒前
15秒前
hhvvvvv完成签到,获得积分10
16秒前
儒雅笑蓝完成签到 ,获得积分10
17秒前
小小鱼完成签到,获得积分10
18秒前
19秒前
彩虹发布了新的文献求助10
19秒前
Tess完成签到,获得积分20
20秒前
王嘉尔发布了新的文献求助10
20秒前
weidongwu发布了新的文献求助10
20秒前
因一完成签到,获得积分10
21秒前
23秒前
石中酒完成签到 ,获得积分10
25秒前
26秒前
王嘉尔完成签到,获得积分10
26秒前
27秒前
强强完成签到,获得积分10
28秒前
29秒前
海德堡发布了新的文献求助10
31秒前
32秒前
Atom完成签到,获得积分10
33秒前
yar应助精明问筠采纳,获得10
33秒前
小红的忧伤完成签到,获得积分10
33秒前
爆米花应助搂猫睡觉的鱼采纳,获得10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967175
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163672
捐赠科研通 3247423
什么是DOI,文献DOI怎么找? 1793810
邀请新用户注册赠送积分活动 874616
科研通“疑难数据库(出版商)”最低求助积分说明 804488