亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and External Validation of Radiomics Approach for Nuclear Grading in Clear Cell Renal Cell Carcinoma

医学 无线电技术 接收机工作特性 肾透明细胞癌 肾细胞癌 分级(工程) 随机森林 放射科 人工智能 特征(语言学) 核医学 医学影像学 计算机科学 病理 内科学 土木工程 哲学 工程类 语言学
作者
Hongyu Zhou,Haixia Mao,Di Dong,Mengjie Fang,Dongsheng Gu,Xueling Liu,Min Xu,Shudong Yang,Jian Zou,Ruohan Yin,Hairong Zheng,Jie Tian,Changjie Pan,Xiangming Fang
出处
期刊:Annals of Surgical Oncology [Springer Nature]
卷期号:27 (10): 4057-4065 被引量:25
标识
DOI:10.1245/s10434-020-08255-6
摘要

Nuclear grades of clear cell renal cell carcinoma (ccRCC) are usually confirmed by invasive methods. Radiomics is a quantitative tool that uses non-invasive medical imaging for tumor diagnosis and prognosis. In this study, a radiomics approach was proposed to analyze the association between preoperative computed tomography (CT) images and nuclear grades of ccRCC.Our dataset included 320 ccRCC patients from two centers and was divided into a training set (n = 124), an internal test set (n = 123), and an external test set (n = 73). A radiomic feature set was extracted from unenhanced, corticomedullary phase, and nephrographic phase CT images. The maximizing independent classification information criteria function and recursive feature elimination with cross-validation were used to select effective features. Random forests were used to build a final model for predicting nuclear grades, and area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of radiomic features and models.The radiomic features from the three CT phases could effectively distinguished the four nuclear grades. A combined model, merging radiomic features and clinical characteristics, obtained good predictive performances in the internal test set (AUC 0.77, 0.75, 0.79, and 0.85 for the four grades, respectively), and performance was further confirmed in the external test set, with AUCs of 0.75, 0.68, and 0.73 (no fourth-level data).The combination of CT radiomic features and clinical characteristics could discriminate the nuclear grades in ccRCC, which may help in assisting treatment decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
个性的抽象完成签到 ,获得积分10
6秒前
6秒前
VDC发布了新的文献求助10
7秒前
牢牛马完成签到 ,获得积分10
7秒前
欢喜的伊完成签到,获得积分10
8秒前
9秒前
丘比特应助接两块钱采纳,获得10
10秒前
11秒前
12秒前
mtt发布了新的文献求助10
15秒前
17秒前
zz关闭了zz文献求助
17秒前
17秒前
国色不染尘完成签到,获得积分10
18秒前
19秒前
19秒前
leslie发布了新的文献求助10
21秒前
爆米花应助monster采纳,获得10
22秒前
111222333发布了新的文献求助30
23秒前
ceeray23应助6666采纳,获得10
24秒前
小葵发布了新的文献求助200
26秒前
mtt完成签到,获得积分10
28秒前
28秒前
yuki完成签到 ,获得积分10
29秒前
kki完成签到,获得积分10
34秒前
粗犷的灵松完成签到,获得积分10
34秒前
CipherSage应助轩辕寄翠采纳,获得10
35秒前
喜悦宫苴完成签到,获得积分10
36秒前
酷酷以柳发布了新的文献求助10
36秒前
GavinYi完成签到,获得积分10
39秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
BowieHuang应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
43秒前
44秒前
合一海盗完成签到,获得积分10
45秒前
47秒前
扶苏完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599