Multi-Period Portfolio Optimization with Investor Views under Regime Switching

黑色-垃圾模型 计算机科学 文件夹 投资组合收益率 投资策略 应用程序组合管理 集合(抽象数据类型) 复制投资组合 资产(计算机安全) 交易策略 经济 投资业绩 现代投资组合理论 资产配置 数学优化 计量经济学 项目组合管理 投资(军事) 业务 投资组合优化 投资回报率 微观经济学 金融经济学 市场流动性 数学 财务 政治 计算机安全 政治学 管理 程序设计语言 法学 项目管理 生产(经济)
作者
Razvan Oprisor,Roy H. Kwon
出处
期刊:Journal of risk and financial management 卷期号:14 (1): 3-3 被引量:7
标识
DOI:10.3390/jrfm14010003
摘要

We propose a novel multi-period trading model that allows portfolio managers to perform optimal portfolio allocation while incorporating their interpretable investment views. This model’s significant advantage is its intuitive and reactive design that incorporates the latest asset return regimes to quantitatively solve managers’ question: how certain should one be that a given investment view is occurring? First, we describe a framework for multi-period portfolio allocation formulated as a convex optimization problem that trades off expected return, risk and transaction costs. Using a framework borrowed from model predictive control introduced by Boyd et al., we employ optimization to plan a sequence of trades using forecasts of future quantities, only the first set being executed. Multi-period trading lends itself to dynamic readjustment of the portfolio when gaining new information. Second, we use the Black-Litterman model to combine investment views specified in a simple linear combination based format with the market portfolio. A data-driven method to adjust the confidence in the manager’s views by comparing them to dynamically updated regime-switching forecasts is proposed. Our contribution is to incorporate both multi-period trading and interpretable investment views into one framework and offer a novel method of using regime-switching to determine each view’s confidence. This method replaces portfolio managers’ need to provide estimated confidence levels for their views, substituting them with a dynamic quantitative approach. The framework is reactive, tractable and tested on 15 years of daily historical data. In a numerical example, this method’s benefits are found to deliver higher excess returns for the same degree of risk in both the case when an investment view proves to be correct, but, more notably, also the case when a view proves to be incorrect. To facilitate ease of use and future research, we also developed an open-source software library that replicates our results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净的翠琴完成签到 ,获得积分10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
火焰向上发布了新的文献求助10
1秒前
烟花应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
不配.应助笑嘻嘻采纳,获得10
8秒前
火焰向上完成签到,获得积分10
9秒前
天天快乐应助我是AY采纳,获得10
11秒前
sss2021完成签到,获得积分10
11秒前
欣喜万言完成签到 ,获得积分10
12秒前
田様应助热心的夜安采纳,获得10
13秒前
14秒前
17秒前
小雨点完成签到 ,获得积分10
17秒前
LD发布了新的文献求助10
18秒前
ding应助shawn采纳,获得10
20秒前
Junlei完成签到,获得积分10
21秒前
哈哈哈完成签到,获得积分10
22秒前
bigger.b完成签到,获得积分10
22秒前
小程同学完成签到 ,获得积分10
23秒前
言余给wind的求助进行了留言
24秒前
jbh完成签到,获得积分10
25秒前
YANA完成签到,获得积分10
26秒前
29秒前
顺心靖雁完成签到,获得积分10
31秒前
34秒前
daniel666完成签到 ,获得积分0
35秒前
35秒前
36秒前
cach完成签到,获得积分10
36秒前
36秒前
37秒前
啤酒白酒葡萄酒完成签到,获得积分10
37秒前
侠客发布了新的文献求助10
38秒前
40秒前
852应助奋斗的俊驰采纳,获得10
41秒前
温暖幻桃发布了新的文献求助10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143741
求助须知:如何正确求助?哪些是违规求助? 2795245
关于积分的说明 7813862
捐赠科研通 2451235
什么是DOI,文献DOI怎么找? 1304371
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413