Effect of Dimethylglyoxime on Cobalt Bottom-up Filling

铜互连 丁二酮肟 材料科学 化学 化学工程 纳米技术 冶金 工程类
作者
Yang Hu,Qiang Huang
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (25): 1776-1776
标识
DOI:10.1149/ma2020-02251776mtgabs
摘要

Copper (Cu) damascene processes have been used to produce back end of line (BEOL) interconnect structures 1 . As the critical dimension of BEOL structures approaches the electron mean free path of Cu or below, the copper resistivity exponentially increases, posing significant challenges on scaling. Metals with shorter electron mean free path, for example cobalt (Co), have been explored as the alternative material to replace Cu in the finest metal levels 2 . Cu electrodeposition for trench filling has been extensively investigated. The use of multi-component additive packages leads to void-free filling and the deposition process is explained with the synergistic interaction between the so called suppressor and accelerator 3, 4 . However, since the standard potential of Co 2+ /Co is more negative than that of H + /H 2 , hydrogen evolution reaction (HER) is inevitable during Co deposition, which may pose additional challenges on Co void-free filling. Defect-free filling of Co has been reported in fine features using a single derivative of mercapto-benzimidazole, which suppresses Co deposition but breaks down upon the metal deposition and additive incorporation 5 . Co filling in extremely fine structures has also been reported 6, 7 and HER has been shown to play an important role in such processes 8, 9 , creating a contrast in current efficiency, and thus in deposition rates, between the feature bottom and field regions. However, proprietary chemistries were used in such studies and no chemical information is available. In our previous study, additives with a conjugated pair of oxime groups such as dimethylglyoxime (DMG) not only strongly suppress Co deposition, and the suppression breaks down upon the reduction and incorporation of adsorbed Co-dioxime chelates 10 , but also catalyze HER 11 and have the potential in tailoring the Faraday efficiency. In this talk, the effects of electrolyte pH, concentration of DMG, current density and agitation will be systematically discussed in a context of current efficiency. A mechanism is proposed to explain the Co bottom-up filling using DMG. Figure 1 (a) shows the cyclic voltammograms of Co deposition in presence of different DMG concentrations. It is clear to see that the suppression effect becomes stronger as more DMG is added into the electrolyte. Moreover, the suppression breaks down at a negative potential and a hysteresis is resulted, potentially enabling different deposition rates between field and feature. Figure 1 (b) shows the effect of agitation on Co deposition, where such hysteresis loops gradually shift toward more negative potentials as the rotation rate increases, in a similar way as the DMG concentration increases. Figure 1 (c) shows the current efficiency of Co thin film deposition at different DMG concentration and different rotation rates. For example, 200 ppm DMG at 215 rpm was used to emulate Co deposition in the field region and 25 ppm DMG at 29 rpm to mimic the situation at the bottom of a feature with an aspect ratio of about 1:3. The significant difference in Co deposition rates at a low current density of 4 mA/cm 2 leads to a successful void-free Co filling in the trench shown in Figure 1(d). References P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, IBM Journal of Research and Development 42, 567 (1998). D. Gall, Journal of Applied Physics 119, 085101 (2016). T. Moffat, D. Wheeler, W. Huber, and D. Josell, Electrochemical and Solid-State Letters 4, C26 (2001). T. P. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, Journal of The Electrochemical Society 147, 4524 (2000). C. H. Lee, J. E. Bonevich, J. E. Davies, and T. P. Moffat, Journal of The Electrochemical Society 156, D301 (2009). F. Wafula, J. Wu, S. Branagan, H. Suzuki, A. Gracias, and J. van Eisden, in Electrolytic Cobalt Fill of Sub-5 nm Node Interconnect Features, 2018 (IEEE), p. 123. J. Wu, F. Wafula, S. Branagan, H. Suzuki, and J. van Eisden, Journal of The Electrochemical Society 166, D3136 (2019). M. A. Rigsby, L. J. Brogan, N. V. Doubina, Y. Liu, E. C. Opocensky, T. A. Spurlin, J. Zhou, and J. D. Reid, ECS Transactions 80, 767 (2017). M. A. Rigsby, L. J. Brogan, N. V. Doubina, Y. Liu, E. C. Opocensky, T. A. Spurlin, J. Zhou, and J. D. Reid, Journal of The Electrochemical Society 166, D3167 (2019). T. Lyons and Q. Huang, Electrochimica Acta 245, 309 (2017). Y. Hu and Q. Huang, Journal of The Electrochemical Society 166, D3175 (2019). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何以解忧完成签到,获得积分10
刚刚
LSxtd完成签到,获得积分20
1秒前
结实三颜完成签到,获得积分10
1秒前
乔乔发布了新的文献求助10
1秒前
领导范儿应助帕尼灬尼采纳,获得10
1秒前
瞌睡社畜发布了新的文献求助10
1秒前
2秒前
SYLH应助虎子采纳,获得10
3秒前
爆米花应助yuanhao采纳,获得10
4秒前
4秒前
斯文幻儿发布了新的文献求助10
4秒前
5秒前
终澈完成签到,获得积分10
5秒前
Junping发布了新的文献求助10
5秒前
橘生淮南发布了新的文献求助10
6秒前
6秒前
7秒前
清宁亦无拘完成签到 ,获得积分10
7秒前
张行发布了新的文献求助10
7秒前
852应助踏雪无痕采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
WO完成签到,获得积分20
10秒前
李健的小迷弟应助Dr.coco采纳,获得10
11秒前
wnx001111发布了新的文献求助10
11秒前
脑洞疼应助nqyKOj采纳,获得20
11秒前
隐形曼青应助千秋入画采纳,获得10
11秒前
稳重诗珊完成签到,获得积分10
11秒前
11秒前
星辰大海应助哈士轩采纳,获得10
11秒前
st完成签到,获得积分10
11秒前
12秒前
jianlong0206完成签到,获得积分10
12秒前
wanci应助xxx采纳,获得10
12秒前
12秒前
果冻信号发布了新的文献求助10
12秒前
hdbys发布了新的文献求助10
12秒前
我爱吃糯米团子完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635