Effect of Dimethylglyoxime on Cobalt Bottom-up Filling

铜互连 丁二酮肟 材料科学 化学 化学工程 纳米技术 冶金 工程类
作者
Yang Hu,Qiang Huang
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (25): 1776-1776
标识
DOI:10.1149/ma2020-02251776mtgabs
摘要

Copper (Cu) damascene processes have been used to produce back end of line (BEOL) interconnect structures 1 . As the critical dimension of BEOL structures approaches the electron mean free path of Cu or below, the copper resistivity exponentially increases, posing significant challenges on scaling. Metals with shorter electron mean free path, for example cobalt (Co), have been explored as the alternative material to replace Cu in the finest metal levels 2 . Cu electrodeposition for trench filling has been extensively investigated. The use of multi-component additive packages leads to void-free filling and the deposition process is explained with the synergistic interaction between the so called suppressor and accelerator 3, 4 . However, since the standard potential of Co 2+ /Co is more negative than that of H + /H 2 , hydrogen evolution reaction (HER) is inevitable during Co deposition, which may pose additional challenges on Co void-free filling. Defect-free filling of Co has been reported in fine features using a single derivative of mercapto-benzimidazole, which suppresses Co deposition but breaks down upon the metal deposition and additive incorporation 5 . Co filling in extremely fine structures has also been reported 6, 7 and HER has been shown to play an important role in such processes 8, 9 , creating a contrast in current efficiency, and thus in deposition rates, between the feature bottom and field regions. However, proprietary chemistries were used in such studies and no chemical information is available. In our previous study, additives with a conjugated pair of oxime groups such as dimethylglyoxime (DMG) not only strongly suppress Co deposition, and the suppression breaks down upon the reduction and incorporation of adsorbed Co-dioxime chelates 10 , but also catalyze HER 11 and have the potential in tailoring the Faraday efficiency. In this talk, the effects of electrolyte pH, concentration of DMG, current density and agitation will be systematically discussed in a context of current efficiency. A mechanism is proposed to explain the Co bottom-up filling using DMG. Figure 1 (a) shows the cyclic voltammograms of Co deposition in presence of different DMG concentrations. It is clear to see that the suppression effect becomes stronger as more DMG is added into the electrolyte. Moreover, the suppression breaks down at a negative potential and a hysteresis is resulted, potentially enabling different deposition rates between field and feature. Figure 1 (b) shows the effect of agitation on Co deposition, where such hysteresis loops gradually shift toward more negative potentials as the rotation rate increases, in a similar way as the DMG concentration increases. Figure 1 (c) shows the current efficiency of Co thin film deposition at different DMG concentration and different rotation rates. For example, 200 ppm DMG at 215 rpm was used to emulate Co deposition in the field region and 25 ppm DMG at 29 rpm to mimic the situation at the bottom of a feature with an aspect ratio of about 1:3. The significant difference in Co deposition rates at a low current density of 4 mA/cm 2 leads to a successful void-free Co filling in the trench shown in Figure 1(d). References P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, IBM Journal of Research and Development 42, 567 (1998). D. Gall, Journal of Applied Physics 119, 085101 (2016). T. Moffat, D. Wheeler, W. Huber, and D. Josell, Electrochemical and Solid-State Letters 4, C26 (2001). T. P. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, Journal of The Electrochemical Society 147, 4524 (2000). C. H. Lee, J. E. Bonevich, J. E. Davies, and T. P. Moffat, Journal of The Electrochemical Society 156, D301 (2009). F. Wafula, J. Wu, S. Branagan, H. Suzuki, A. Gracias, and J. van Eisden, in Electrolytic Cobalt Fill of Sub-5 nm Node Interconnect Features, 2018 (IEEE), p. 123. J. Wu, F. Wafula, S. Branagan, H. Suzuki, and J. van Eisden, Journal of The Electrochemical Society 166, D3136 (2019). M. A. Rigsby, L. J. Brogan, N. V. Doubina, Y. Liu, E. C. Opocensky, T. A. Spurlin, J. Zhou, and J. D. Reid, ECS Transactions 80, 767 (2017). M. A. Rigsby, L. J. Brogan, N. V. Doubina, Y. Liu, E. C. Opocensky, T. A. Spurlin, J. Zhou, and J. D. Reid, Journal of The Electrochemical Society 166, D3167 (2019). T. Lyons and Q. Huang, Electrochimica Acta 245, 309 (2017). Y. Hu and Q. Huang, Journal of The Electrochemical Society 166, D3175 (2019). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青春梦完成签到 ,获得积分10
6秒前
11秒前
asdwind完成签到,获得积分10
11秒前
狼来了aas完成签到,获得积分10
14秒前
14秒前
S月小小发布了新的文献求助10
16秒前
没有名字完成签到 ,获得积分10
17秒前
支雨泽完成签到,获得积分10
21秒前
22秒前
稳重乌冬面完成签到 ,获得积分10
23秒前
砚木完成签到 ,获得积分10
23秒前
mly完成签到 ,获得积分10
24秒前
DeenMayo完成签到,获得积分10
25秒前
26秒前
科研狼完成签到,获得积分10
27秒前
IAMXC发布了新的文献求助10
27秒前
时尚的开山完成签到,获得积分10
31秒前
梁晓雪完成签到 ,获得积分10
32秒前
IAMXC完成签到,获得积分20
34秒前
毛舒敏完成签到 ,获得积分10
34秒前
陈宇航完成签到 ,获得积分10
36秒前
OeO完成签到 ,获得积分10
40秒前
41秒前
世上僅有的榮光之路完成签到,获得积分0
41秒前
fanglihua完成签到 ,获得积分10
51秒前
小成完成签到 ,获得积分10
54秒前
Pepsi完成签到 ,获得积分10
56秒前
56秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
彭于晏应助科研通管家采纳,获得10
57秒前
小离应助科研通管家采纳,获得10
57秒前
57秒前
脑洞疼应助科研通管家采纳,获得10
57秒前
酷波er应助科研通管家采纳,获得10
57秒前
2000pluv完成签到 ,获得积分10
57秒前
CodeCraft应助科研通管家采纳,获得10
57秒前
专注的雪完成签到 ,获得积分10
1分钟前
芒果完成签到 ,获得积分10
1分钟前
toe完成签到,获得积分10
1分钟前
顾矜应助_蝴蝶小姐采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304275
求助须知:如何正确求助?哪些是违规求助? 4450880
关于积分的说明 13849976
捐赠科研通 4337819
什么是DOI,文献DOI怎么找? 2381673
邀请新用户注册赠送积分活动 1376668
关于科研通互助平台的介绍 1343751